Freshness constraints of an age of information based event-triggered Kalman consensus filter algorithm over a wireless sensor network  被引量:3

在线阅读下载全文

作  者:Rui WANG Yahui LI Hui SUN Youmin ZHANG 

机构地区:[1]College of Information Engineering and Automation,Civil Aviation University of China,Tianjin 300300,China [2]Department of Mechanical,Industrial and Aerospace Engineering,Concordia University,Montreal,Quebec H3G 1M8,Canada

出  处:《Frontiers of Information Technology & Electronic Engineering》2021年第1期51-67,共17页信息与电子工程前沿(英文版)

基  金:Project supported by the Civil Aviation Science and Technology Project(No.MHRD20150220);the Fundamental Research Funds for the Central Universities,China(No.3122017003);the Natural Sciences and Engineering Research Council of Canada。

摘  要:This paper presents the design of a new event-triggered Kalman consensus filter(ET-KCF)algorithm for use over a wireless sensor network(WSN).This algorithm is based on information freshness,which is calculated as the age of information(Aol)of the sampled data.The proposed algorithm integrates the traditional event-triggered mechanism,information freshness calculation method,and Kalman consensus filter(KCF)algorithm to estimate the concentrations of pollutants in the aircraft more efficiently.The proposed method also considers the influence of data packet loss and the aircraft's loss of communication path over the WSN,and presents an Aol-freshness-based threshold selection method for the ET-KCF algorithm,which compares the packet Aol to the minimum average Aol of the system.This method can obviously reduce the energy consumption because the transmission of expired information is reduced.Finally,the convergence of the algorithm is proved using the Lyapunov stability theory and matrix theory.Simulation results show that this algorithm has better fault tolerance compared to the existing KCF and lower power consumption than other ET-KCFs.

关 键 词:Distributed Kalman consensus filter(KCF) Event-triggered mechanism Age of information(Aol) Stability analysis Energy optimization 

分 类 号:TP391[自动化与计算机技术—计算机应用技术] TP393[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象