基于全卷积神经网络的肺纤维化合并肺肿瘤CT图像的分割方法  被引量:2

CT image segmentationalgorithm of pulmonary fibrosis with lung tumor based on total convolution neural network

在线阅读下载全文

作  者:韦明炯[1] 杨创勃[2] 刘雨峰[1] 温界玉 康彦智 左博 赵宇新[3] WEI Mingjiong;YANG Chuangbo;LIU Yufeng;WEN Jieyu;KANG Yanzhi;ZUO Bo;ZHAO Yuxin(Shaanxi Second Provincial People′s Hospital,Xi′an710005,China;Shaanxi University of Chinese Medicine,Xi′an712046;Xi′an North Hospital,Xi′an710068)

机构地区:[1]陕西省第二人民医院,陕西西安710005 [2]陕西中医药大学,陕西西安712046 [3]西安市北方医院,陕西西安710068

出  处:《生物医学工程研究》2020年第4期342-346,共5页Journal Of Biomedical Engineering Research

基  金:陕西省医学科学研究重点项目(2016JM1144)。

摘  要:为提高CT图像分割提取图像特征的分割效果,设计基于全卷积神经网络的肺纤维化合并肺肿瘤CT图像的分割方法。肺部CT影像经过膨胀、腐蚀、孔洞填充、开运算、闭运算、掩模运算得到消除器官的肺实质图像,并提取ROI。通过改进全卷积神经网络结构,制定全卷积神经网络对于输入特征图的选取标准,完成CT图像分割算法的研究。选取IOU、Dice系数、精准率与召回率作为图像分割的评价指标。实验结果表明,经过对不同分割方法评价指标的比较,本研究设计的方法具有更理想的分割结果。In order to improve the CT image segmentation effects and extraction of image features,we designed a CT image segmentation method based on full convolutional neural network for pulmonary fibrosis complicated with lung tumor.The lung CT images were processed by expansion,erosion,hole filling,opening operation,closing operation,and mask operation to obtain lung parenchymal images of the eliminated organs,and ROI was extracted.By improving the structure of the fully convolutional neural network and developing the selection criteria of the fully convolutional neural network for inputting feature maps,the research on the CT image segmentation algorithm was completed.IOU,Dice coefficient,precision rate and recall rate were selected as the evaluation indexes of image segmentation.The experimental results show that comparing to the evaluation indexes of different segmentation methods,the algorithm of the study has better segmentation performance.

关 键 词:全卷积神经网络 肺纤维化合并肺肿瘤 CT图像分割算法 

分 类 号:R318[医药卫生—生物医学工程] TP301[医药卫生—基础医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象