检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Kung-Ching Chang Sihong Shao Dong Zhang Weixi Zhang
机构地区:[1]LMAM and School of Mathematical Sciences,Peking University,Beijing,100871,China
出 处:《Science China Mathematics》2021年第1期1-32,共32页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China(Grant Nos.11822102 and 11421101);supported by Beijing Academy of Artificial Intelligence(BAAI);supported by the project funded by China Postdoctoral Science Foundation(Grant No.BX201700009)。
摘 要:Existing critical point theories including metric and topological critical point theories are difficult to be applied directly to some concrete problems in particular polyhedral settings,because the notions of critical sets could be either very vague or too large.To overcome these difficulties,we develop the critical point theory for nonsmooth but Lipschitzian functions defined on convex polyhedrons.This yields natural extensions of classical results in the critical point theory,such as the Liusternik-Schnirelmann multiplicity theorem.More importantly,eigenvectors for some eigenvalue problems involving graph 1-Laplacian coincide with critical points of the corresponding functions on polytopes,which indicates that the critical point theory proposed in the present paper can be applied to study the nonlinear spectral graph theory.
关 键 词:critical point theory nonsmooth analysis combinatorial optimization POLYTOPE spectral graph theory
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7