Nonsmooth critical point theory and applications to the spectral graph theory  被引量:1

在线阅读下载全文

作  者:Kung-Ching Chang Sihong Shao Dong Zhang Weixi Zhang 

机构地区:[1]LMAM and School of Mathematical Sciences,Peking University,Beijing,100871,China

出  处:《Science China Mathematics》2021年第1期1-32,共32页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.11822102 and 11421101);supported by Beijing Academy of Artificial Intelligence(BAAI);supported by the project funded by China Postdoctoral Science Foundation(Grant No.BX201700009)。

摘  要:Existing critical point theories including metric and topological critical point theories are difficult to be applied directly to some concrete problems in particular polyhedral settings,because the notions of critical sets could be either very vague or too large.To overcome these difficulties,we develop the critical point theory for nonsmooth but Lipschitzian functions defined on convex polyhedrons.This yields natural extensions of classical results in the critical point theory,such as the Liusternik-Schnirelmann multiplicity theorem.More importantly,eigenvectors for some eigenvalue problems involving graph 1-Laplacian coincide with critical points of the corresponding functions on polytopes,which indicates that the critical point theory proposed in the present paper can be applied to study the nonlinear spectral graph theory.

关 键 词:critical point theory nonsmooth analysis combinatorial optimization POLYTOPE spectral graph theory 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象