检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiao Liu Yan-Qing Ma Wei Tao Peng Zhang 刘霄;马滟青;陶伟;张鹏(School of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871,China;Center for High Energy Physics,Peking University,Beijing 100871,China;Collaborative Innovation Center of Quantum Matter,Beijing 100871,China)
机构地区:[1]School of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871,China [2]Center for High Energy Physics,Peking University,Beijing 100871,China [3]Collaborative Innovation Center of Quantum Matter,Beijing 100871,China
出 处:《Chinese Physics C》2021年第1期162-174,共13页中国物理C(英文版)
基 金:Supported in part by the National Natural Science Foundation of China(11875071,11975029);the High-performance Computing Platform of Peking University。
摘 要:We extend the auxiliary-mass-flow(AMF) method originally developed for Feynman loop integration to calculate integrals which also involve phase-space integration.The flow of the auxiliary mass from the boundary(∞) to the physical point(0+) is obtained by numerically solving differential equations with respective to the auxiliary mass.For problems with two or more kinematical invariants,the AMF method can be combined with the traditional differential-equation method,providing systematic boundary conditions and a highly nontrivial self-consistency check.The method is described in detail using a pedagogical example of e+e-→γ*→tt+X at NNLO.We show that the AMF method can systematically and efficiently calculate integrals to high precision.
关 键 词:phase-space integration perturbation theory MULTI-LOOP
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.75.212