地震波形分类技术在地质异常体解释中的应用  被引量:7

Application of seismic waveform classification technology in interpretation of geological abnormal body

在线阅读下载全文

作  者:程彦[1,2] 赵镨[1] 林建东[2] 张兴平[2] CHENG Yan;ZHAO Pu;LIN Jiandong;ZHANG Xingping(China National Administration of Coal Geology,Beijing 100038,China;Research Institute of Coal Geophysical Exploration,China National Administration of Coal Geology,Zhuozhou 072750,China)

机构地区:[1]中国煤炭地质总局,北京100038 [2]中国煤炭地质总局地球物理勘探研究院,河北涿州072750

出  处:《煤田地质与勘探》2020年第6期87-92,102,共7页Coal Geology & Exploration

基  金:中国煤炭地质总局科技创新基金项目(ZMKJ-2019-B11,ZMKJ-2019-J11)。

摘  要:地震波形分类技术具有统计地震信号总体变化和反映这种变化分布规律的特点,是地震属性分析技术的重要延伸,在地质异常体解释方面具有良好的应用效果。高密度三维地震资料具有高信噪比,高分辨率和高保真度的特点,尝试利用波形分类技术对高密度三维地震资料反映的煤层赋存状态、岩浆岩侵入区进行预测,并对陷落柱解释方法进行了研究。井下巷道实际揭露和钻孔验证结果表明:波形分类方法解释的地质异常体精度高、圈定范围准确,可以为煤矿安全开采提供精准的地质资料。Seismic waveform classification technology has the characteristics of statistics of the overall change of the seismic signal and reflects the distribution of this change.It is an important extension of seismic attribute analysis technology.It has a good application effect on the reflected wave changes caused by geological anomalies,which is similar to the conventional single attribute prediction.Compared,it has the characteristics of sensitive reflection and reliable results.High density 3D seismic data have the characteristics of high signal-to-noise ratio,high resolution and high fidelity.This paper attempts to use waveform classification technology to predict the occurrence of coal seam and magmatic intrusion area reflected by high density 3D seismic data,and studies the interpretation method of collapse column.Through actual exposure and drilling verification in underground roadways,the prediction results have high accuracy and accurate bounds,which can provide accurate geological data for coal mining.

关 键 词:波形分类 地质异常体 赋存状态 岩浆岩侵入区 陷落柱 高密度三维地震 

分 类 号:P631.4[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象