区域环境土壤重金属污染潜在生态风险的属性识别综合评价--以福建闽江河口湿地土壤为例  被引量:1

Heavy Metal Pollution and Potential Ecological Risk A ssessment Based on Attribute Recognition Model in Regional Environmental Soil:A Case Study of the Wetland Soil of Minjiang River Estuary

在线阅读下载全文

作  者:陈怀宇 吴春山[1] 刘文伟[1] 王菲凤[1] CHEN Huaiyu;WU Chunshan;LIU Wenwei;WANG Feifeng(College of Enironmental Science and Engineering,Fujian Normal University,Fuzhou 350007,China)

机构地区:[1]福建师范大学环境科学与工程学院,福建福州350007

出  处:《福建师范大学学报(自然科学版)》2021年第1期72-79,共8页Journal of Fujian Normal University:Natural Science Edition

基  金:福建省科技厅项目(2016Y4002、2018Y0022);福建省教育厅项目(JAT170133)。

摘  要:属性识别模型发展于模糊数学法理论,能够处理复杂多因素研究对象难以综合评价和定量排序的问题.提出将以变异系数法确定权重的属性识别模型耦合Hankanson生态风险指数法,对区域重金属进行生态风险综合评价和排序的理论方法,并对福建闽江河口湿地进行实证研究.结果表明,8个河口湿地监测站点的风险程度(综合得分)从高到低依次为琅岐大桥(3.34)>红树林地(3.35)>宣教区(3.63)>水禽保护区(4.09)>鳝鱼滩(4.47)>梅花镇(4.57)>浪头鼻(4.63)>潭头港(4.71),其中浪头鼻和潭头港为轻微风险,其余为中等风险程度;多站点Cd超标严重,与综合风险程度显著相关.The attribute recognition model,based on classical fuzzy mathematics theory,can achieve synthestical assessment and quantitative ranking of complex multifactors research objects effectively.In this study,the theory of attribute recognition model coupled with the ecological risk index method was proposed to evaluate and rank the ecological risk of regional heavy metals,and Minjiang estuary wetland is taken as a case to verify it.The results showed that the risk degree of the 8 monitoring stations ranked from high to low as following:Lang-qi bridge(3.34)>Mangrove forest(3.35)>Xuan-jiao-qu(3.63)>Waterfowl protection area(4.09)>Shan-yu-tan(4.47)>Mei-hua town(4.57)>Lang-tou-bi(4.63)>Tan-tou port(4.71).Among them,Lang-tou-bi and Tantou port were slight risks,and other were medium risks.Cd in many sites exceeded the standard seriously,which was significantly correlated with the comprehensive risk degree.

关 键 词:重金属 生态风险评价 属性识别理论 生态风险指数 闽江河口湿地 

分 类 号:X821[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象