检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:潘锋 陈炯 张乔林 PAN Feng;CHEN Jiong;ZHANG Qiao-lin(School of Electrical Engineering,Shanghai University of Electric,Shanghai 200090,China;School of Electronics and Information Engineering,Shanghai University of Electric,Shanghai 200090,China)
机构地区:[1]上海电力大学电气工程学院,上海200090 [2]上海电力大学电子与信息工程学院,上海200090
出 处:《水电能源科学》2021年第1期206-210,共5页Water Resources and Power
摘 要:随着风电等新能源大规模并网,其出力的不确定性给电力系统日前调度带来很大挑战。传统的研究方法多是假设风电功率预测误差服从某种概率分布,但风电功率预测误差受到多种因素影响,概率分布模型无法准确描述其特性。为此,采用基于神经网络的组合预测方法对风电功率误差进行建模,再将预测的风电误差加入到包含热电机组、火电机组、风电、储热装置和电锅炉的热电联合优化调度模型中,最后以实际的10机系统为例进行仿真,分析了风电预测误差对机组出力、风电消纳及调度成本的影响。结果表明,与传统方法相比,所建模型可减少机组燃煤成本与旋转备用成本,降低了经济调度成本,提高了风电消纳水平。With the large-scale grid connection of new energy sources such as wind power,the uncertainty of its output has brought great challenges to the day-ahead generation scheduling of power systems.The traditional research methods mostly assume that the wind power prediction error obeys a certain probability distribution,but the wind power prediction error is affected by many factors,and the probability distribution model cannot accurately describe its characteristics.In this paper,the combined prediction method based on neural network is used to model the wind power error.Then the predicted wind power error is added to the combined thermal power optimization scheduling model including thermal power unit,thermal power unit,wind power,heat storage device and electric boiler.Finally,the actual 10 unit system is simulated to analyze the impact of prediction error of wind power on unit output,wind power consumption and dispatching cost.Compared with the traditional method,the results show that this model can reduce the cost of coal-fired unit and spinning reserve,reduce the cost of economic scheduling,and improve the level of wind power consumption.
关 键 词:风电功率预测误差 神经网络 电热系统调度 风电消纳
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70