Regular perturbation solution of Couette flow(non-Newtonian)between two parallel porous plates: a numerical analysis with irreversibility  被引量:1

在线阅读下载全文

作  者:M.NAZEER M.I.KHAN S.KADRY Yuming CHU F.AHMAD W.ALI M.IRFAN M.SHAHEEN 

机构地区:[1]Department of Mathematics,Institute of Arts and Sciences,Government College University,Chiniot Campus,Faisalabad 35400,Pakistan [2]Department of Mathematics and Statistics,Riphah International University I-14,Islamabad 44000,Pakistan [3]Department of Mathematics and Computer Science,Beirut Arab University,Beirut 11-5020,Lebanon [4]Department of Mathematics,Huzhou University,Huzhou 313000,Zhejiang Province,China [5]Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering,Changsha University of Science&Technology,Changsha 410114,China [6]Department of Applied Sciences,National Textile University,Faisalabad 38000,Pakistan [7]Chair of Production Technology,Faculty of Engineering Technology,University of Twente,Enschede 7500 AE,The Netherlands [8]Department of Mathematics,Riphah Inernational Lniversity,Faisalabad Campus,Faiselabad 38000,Pakistan

出  处:《Applied Mathematics and Mechanics(English Edition)》2021年第1期127-142,共16页应用数学和力学(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Nos.11971142,11871202,61673169,11701176,11626101,and 11601485)。

摘  要:The unavailability of wasted energy due to the irreversibility in the process is called the entropy generation.An irreversible process is a process in which the entropy of the system is increased.The second law of thermodynamics is used to define whether the given system is reversible or irreversible.Here,our focus is how to reduce the entropy of the system and maximize the capability of the system.There are many methods for maximizing the capacity of heat transport.The constant pressure gradient or motion of the wall can be used to increase the heat transfer rate and minimize the entropy.The objective of this study is to analyze the heat and mass transfer of an Eyring-Powell fluid in a porous channel.For this,we choose two different fluid models,namely,the plane and generalized Couette flows.The flow is generated in the channel due to a pressure gradient or with the moving of the upper lid.The present analysis shows the effects of the fluid parameters on the velocity,the temperature,the entropy generation,and the Bejan number.The nonlinear boundary value problem of the flow problem is solved with the help of the regular perturbation method.To validate the perturbation solution,a numerical solution is also obtained with the help of the built-in command NDSolve of MATHEMATICA 11.0.The velocity profile shows the shear thickening behavior via first-order Eyring-Powell parameters.It is also observed that the profile of the Bejan number has a decreasing trend against the Brinkman number.Whenηi→0(i=1,2,3),the Eyring-Powell fluid is transformed into a Newtonian fluid.

关 键 词:Couette flow Eyring-Powell fluid entropy generation perturbation method Bejan number 

分 类 号:O361[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象