检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王光耀 王丽珍[1] 杨培忠[1] 陈红梅[1] WANG Guangyao;WANG Lizhen;YANG Peizhong;CHEN Hongmei(School of Information Science and Engineering,Yunnan University,Kunming 650504,China)
机构地区:[1]云南大学信息学院,昆明650504
出 处:《计算机科学与探索》2021年第2期366-378,共13页Journal of Frontiers of Computer Science and Technology
基 金:国家自然科学基金(61966036,61662086);云南省创新团队建设项目(2018HC019)。
摘 要:空间co-location(并置)模式是指实例在空间中频繁关联的一组空间特征的子集。在空间数据挖掘中,现有算法主要针对的是正模式的挖掘,而空间中还存在着具有强负相关性的模式,如负co-location模式,这类模式的挖掘在一些应用中同样具有重要的意义。现有的负co-location模式挖掘算法的时间复杂度较高,挖掘到的模式数量巨大。针对该问题,探索了负co-location模式的向上包含性质,提出了极小负co-location模式,证明了极小负co-location模式可推导出所有频繁负co-location模式。在负co-location模式挖掘中,计算模式的表实例是制约挖掘效率的根本因素,为此提出了3个剪枝策略有效地提高了算法的效率。在真实和合成数据集上的大量实验,验证了提出方法的正确性和高效性。特别地,大量实验结果表明极小负co-location模式可将频繁负co-location模式数量压缩80%以上。A spatial co-location pattern refers to a subset of spatial features whose instances are frequently co-located in spatial.In spatial data mining,most of the existing algorithms aim to discover the positive patterns.Moreover,there are patterns with strong negative correlations in spatial,such as negative co-location patterns.The discovery of such patterns is also greatly significant in some applications.Existing negative co-location patterns mining algorithm is time-consuming and the number of mining results is huge.To address these problems,this paper explores the upward inclusion property of the negative co-location pattern,and proposes a minimal negative co-location pattern.Based on the minimal negative co-location patterns,all prevalent negative co-location patterns can be derived.In the negative co-location pattern mining process,the calculation of table instances of the candidate patterns is the fundamental factor that restricts the mining efficiency.In order to reduce the calculation of the table instance effectively,three pruning strategies are proposed.A large number of experiments on real and synthetic data sets verify the correctness and efficiency of the proposed algorithm.In particular,the experimental results show that the minimal negative co-location patterns can compress the number of prevalent negative co-location patterns by more than 80%.
关 键 词:空间数据挖掘 空间co-location模式 极小负co-location模式 向上包含 紧凑表示
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.7.80