Supercloseness of the Divergence-Free Finite Element Solutions on Rectangular Grids  

在线阅读下载全文

作  者:Yunqing Huang Shangyou Zhang 

机构地区:[1]Hunan Key Laboratory for Computation and Simulation in Science and Engineering,Xiangtan University,Xiangtan 411105,China [2]Department of Mathematical Sciences,University of Delaware,Newark,DE 19716,USA

出  处:《Communications in Mathematics and Statistics》2013年第2期143-162,共20页数学与统计通讯(英文)

摘  要:By the standard theory,the stable Qk+1,k−Qk,k+1/Qdck divergence-free element converges with the optimal order of approximation for the Stokes equations,but only order k for the velocity in H1-norm and the pressure in L2-norm.This is due to one polynomial degree less in y direction for the first component of velocity,which is a Qk+1,k polynomial of x and y.In this manuscript,we will show by supercloseness of the divergence free element that the order of convergence is truly k+1,for both velocity and pressure.For special solutions(if the interpolation is also divergence-free),a two-order supercloseness is shown to exist.Numerical tests are provided confirming the accuracy of the theory.

关 键 词:Mixed finite element Stokes equations Divergence-free element Quadrilateral element Rectangular grids SUPERCLOSENESS SUPERCONVERGENCE 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象