The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries  被引量:28

在线阅读下载全文

作  者:Jingxing Wu Yinliang Cao Haimin Zhao Jianfeng Mao Zaiping Guo 

机构地区:[1]Institute for Superconducting and Electronic Materials,Australian Institute for Innovative Materials,University of Wollongong,Wollongong,New South Wales,Australia [2]School of Mechanical,Materials,Mechatronics and Biomedical Engineering,University of Wollongong,Wollongong,New South Wales,Australia [3]Tianneng Battery Group Co Ltd,Zhejiang,China

出  处:《Carbon Energy》2019年第1期57-76,共20页碳能源(英文)

基  金:Financial support provided by the Australian Research Council(ARC)(grant nos.FT150100109 and LP160101629)is gratefully acknowledged.The authors also acknowledge Dr Tania Silver at the University of Wollongong for editing the English.

摘  要:Increasing the energy density of conventional lithium-ion batteries(LIBs)is important for satisfying the demands of electric vehicles and advanced electronics.Silicon is considered as one of the most-promising anodes to replace the traditional graphite anode for the realization of high-energy LIBs due to its extremely high theoretical capacity,although its severe volume changes during lithiation/delithiation have led to a big challenge for practical application.In contrast,the co-utilization of Si and graphite has been well recognized as one of the preferred strategies for commercialization in the near future.In this review,we focus on different carbonaceous additives,such as carbon nanotubes,reduced graphene oxide,and pyrolyzed carbon derived from precursors such as pitch,sugars,heteroatom polymers,and so forth,which play an important role in constructing micrometersized hierarchical structures of silicon/graphite/carbon(Si/G/C)composites and tailoring the morphology and surface with good structural stability,good adhesion,high electrical conductivity,high tap density,and good interface chemistry to achieve high capacity and long cycling stability simultaneously.We first discuss the importance and challenge of the co-utilization of Si and graphite.Then,we carefully review and compare the improved effects of various types of carbonaceous materials and their associated structures on the electrochemical performance of Si/G/C composites.We also review the diverse synthesis techniques and treatment methods,which are also significant factors for optimizing Si/G/C composites.Finally,we provide a pertinent evaluation of these forms of carbon according to their suitability for commercialization.We also make far-ranging suggestions with regard to the selection of proper carbonaceous materials and the design of Si/G/C composites for further development.

关 键 词:carbonaceous additives graphite high energy lithium-ion batteries silicon 

分 类 号:TB3[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象