机构地区:[1]Applied Physics Department,College of Physics and Materials Science,Tianjin Normal University,Tianjin,China [2]Key Laboratory of Advanced Ceramics and Machining Technology,Ministry of Education,School of Materials Science and Engineering,Tianjin University,Tianjin,China [3]Institute for Superconducting and Electronic Materials,Australian Institute of Innovative Materials,University of Wollongong,North Wollongong,NSW,Australia [4]Laboratory for Multiscale Materials Experiments,Paul Scherrer Institute,Villigen,PSI,Switzerland [5]State Key Laboratory of Fine Chemicals,DUT-KTH Joint Education and Research Center on Molecular Devices,Institute of Energy Science and Technology,Dalian University of Technology(DUT),Dalian,China
出 处:《Carbon Energy》2020年第2期223-250,共28页碳能源(英文)
基 金:This study was supported by Developed and Applied Funding of Tianjin Normal University(135202XK1702);Program for Innovative Research in the University of Tianjin(TD13-5077);National Natural Science Foundation of China(Number 21905202);Australian Research Council(ARC)through Discovery Early Career Researcher Awards(DECRA,DE170100871).
摘 要:Photoelectrochemical(PEC)water splitting is recognized as a sustainable strategy for hydrogen generation due to its abundant hydrogen source,utilization of inexhaustible solar energy,high-purity product,and environment-friendly process.To actualize a practical PEC water splitting,it is paramount to develop efficient,stable,safe,and low-cost photoelectrode materials.Recently,graphitic carbon nitride(g-C3N4)has aroused a great interest in the new generation photoelectrode materials because of its unique features,such as suitable band structure for water splitting,a certain range of visible light absorption,nontoxicity,and good stability.Some inherent defects of g-C3N4,however,seriously impair further improvement on PEC performance,including low electronic conductivity,high recombination rate of photogenerated charges,and limited visible light absorption at long wavelength range.Construction of g-C3N4-based nanosized heteroarrays as photoelectrodes has been regarded as a promising strategy to circumvent these inherent limitations and achieve the high-performance PEC water splitting due to the accelerated exciton separation and the reduced combination of photogenerated electrons/holes.Herein,we summarize in detail the latest progress of g-C3N4-based nanosized heteroarrays in PEC water-splitting photoelectrodes.Firstly,the unique advantages of this type of photoelectrodes,including the highly ordered nanoarray architectures and the heterojunctions,are highlighted.Then,different g-C3N4-based nanosized heteroarrays are comprehensively discussed,in terms of their fabrication methods,PEC capacities,and mechanisms,etc.To conclude,the key challenges and possible solutions for future development on g-C3N4-based nanosized heteroarray photoelectrodes are discussed.
关 键 词:graphitic carbon nitride HETEROJUNCTIONS NANOARRAYS photoelectrochemical water splitting
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...