Fabrication and multiscale characterization of 3D silver containing bioactive glass-ceramic scaffolds  被引量:1

在线阅读下载全文

作  者:Adam C.Marsh Nathan P.Mellott Natalia Pajares-Chamorro Martin Crimp Anthony Wren Neal D.Hammer Xanthippi Chatzistavrou 

机构地区:[1]Department of Chemical Engineering&Materials Science,Michigan State University,East Lansing,MI,USA [2]Alfred University,Kazuo Inamori School of Engineering,Alfred,NY,USA [3]Department of Microbiology&Molecular Genetics,Michigan State University,East Lansing,MI,USA

出  处:《Bioactive Materials》2019年第1期215-223,共9页生物活性材料(英文)

基  金:funded by Michigan State University.

摘  要:In this work,we fabricated and characterized bioactive 3D glass-ceramic scaffolds with inherent antibacterial properties.The sol-gel(solution-gelation)technique and the sacrificial template method were applied for the fabrication of 3D highly porous scaffolds in the 58.6SiO2-24.9CaO-7.2P2O5-4.2Al2O3–1.5Na2O−1.5K2O–2.1Ag2O system(Ag-BG).This system is known for its advanced bioactive and antibacterial properties.The fabrication of 3D scaffolds has potential applications that impact tissue engineering.The study of the developed scaffolds from macro-characteristics to nano-,revealed a strong correlation between the macroscale properties such as antibacterial action,bioactivity with the microstructural characteristics such as elemental analysis,crystallinity.Elemental homogeneity,morphological,and microstructural characteristics of the scaffolds were studied by scanning electron microscopy associated with energy dispersive spectroscopy(SEM-EDS),transmittance electron microscopy(TEM),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectroscopy(FTIR),and UV-visible spectroscopy methods.The compressive strength of the 3D scaffolds was measured within the range of values for glass-ceramic scaffolds with similar compositions,porosity,and pore size.The capability of the scaffolds to form an apatite-like phase was tested by immersing the scaffolds in simulated body fluid(SBF)and the antibacterial response against methicillin-resistant Staphylococcus aureus(MRSA)was studied.The formation of an apatite phase was observed after two weeks of immersion in SBF and the anti-MRSA effect occurs after both direct and indirect exposure.

关 键 词:3D glass-ceramic scaffolds Nano and macro structural properties Bioactivity Antibacterial properties SILVER 

分 类 号:R31[医药卫生—基础医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象