Comparison of two data fusion methods for localization of wheeled mobile robot in farm conditions  被引量:1

在线阅读下载全文

作  者:S.Erfani A.Jafari A.Hajiahmad 

机构地区:[1]Department of Agricultural Machinery Engineering,College of Agriculture and Natural Resources,University of Tehran,Karaj,Iran

出  处:《Artificial Intelligence in Agriculture》2019年第1期48-55,共8页农业人工智能(英文)

摘  要:Localization of a mobile robot with any structure,work space and task is one of the most fundamental issues in the field of robotics and the prerequisite for moving any mobile robot that has always been a challenge for researchers.In this paper,the Dempster-Shafer(D.S.)and Kalman filter(K.F.)methods are used as the two main tools for the integration and processing of sensor data in robot localization to achieve the best estimate of positioning according to the unsteady environmental conditions in agricultural applications.Also,by providing a new method,the initial weighing on each of these GPS sensors and wheel encoders is done based on the reliability of each one.Also,using the two MAD and MSE criteria,the localization error was compared in both K.F.and D.S.methods.In normal Gaussian noise,the K.F.with a mean error of 2.59%performed better than the D.S.method with a 3.12%error.However,in terms of non-Gaussian noise exposure,the K.F.information was associated with amoderate error of 1.4,while the D.S.behavior in the face of these conditions was not significantly changed.The experimental tests confirmed the statement.

关 键 词:Sensory data fusion Mobile robot LOCALIZATION Dempster-Shafer method Kalman filter 

分 类 号:TP2[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象