基于最佳簇半径的无线传感器网络分簇路由算法  被引量:9

Wireless sensor networks clustering routing algorithm based on optimal cluster radius

在线阅读下载全文

作  者:武一 李家兴 范书瑞 岳雨豪 WU Yi;LI Jiaxing;FAN Shurui;YUE Yuhao(School of Electronic and Information Engineering,Hebei University of Technology,Tianjin 300401,China)

机构地区:[1]河北工业大学电子信息工程学院,天津300401

出  处:《现代电子技术》2021年第4期23-26,共4页Modern Electronics Technique

基  金:国家自然科学基金项目(51377043)。

摘  要:能量消耗的问题一直是无线传感器网络中一个重点研究方向。针对经典LEACH算法中能量消耗过大并且不均匀的问题,提出一种基于最优分簇半径进行分簇的路由算法,即LEACH⁃OR算法。该算法在簇头选取阶段依据最佳簇半径进行簇的划分,避免簇头分布不均匀的现象。在考虑传感器节点的工作剩余能量以及节点间距离的基础上,引入能量参数和距离参数对簇头选择公式进行改进。降低簇头选择的不合理情况。为了降低通信过程中不必要的能量消耗,采取多跳发送的方式,优化数据传送的路径。实验仿真的数据结果表明,与LEACH算法对比,优化之后的算法可以大幅度地节省网络的消耗,从而延长网络的工作时长。The problem of energy consumption has always been a key research direction in wireless sensor networks.In allusion to the excessive and unevenness energy consumption in the classic LEACH algorithm,a low energy adaptive clustering hierarchy based on optimal clustering radius(LEACH⁃OR)is proposed.The algorithm is used to divide the clusters according to the optimal clustering radius in the selection stage of cluster heads to avoid the uneven distribution of the cluster heads.In consideration of the residual working energy of the sensor nodes and the distance between nodes,the energy parameters and distance parameters are introduced to improve the cluster head selection formula,and reduce the unreasonableness of cluster head selection.The multi⁃hop transmission is adopted to optimize the data transmission path,so as to reduce the unnecessary energy consumption in the communication process.The experimental simulation data results show that,in comparison with the LEACH algorithm,the optimized algorithm can greatly save the network consumption to extend the working time of the network.

关 键 词:无线传感器网络 分簇 LEACH⁃OR算法 簇划分 簇头选择 多跳发送 

分 类 号:TN926-34[电子电信—通信与信息系统] TP273[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象