检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘峰[1,2] 杨杰 齐佳音 LIU Feng;YANG Jie;QI Jiayin(School of Computer Science and Technology,East China Normal University,Shanghai 200062,China;Institute of Artificial Intelligence and Change Management,Shanghai University of International Business and Economics,Shanghai 200336,China)
机构地区:[1]华东师范大学计算机科学与技术学院,上海200062 [2]上海对外经贸大学人工智能与变革管理研究院,上海200336
出 处:《信息网络安全》2021年第1期19-26,共8页Netinfo Security
基 金:国家重点研发计划[2017YFB0803304];国家自然科学基金[72042004]。
摘 要:椭圆曲线数字签名算法(ECDSA)是区块链密码学技术中常见的数字签名之一,其在加密货币、密钥身份认证等方面已被广泛应用。然而当前的区块链ECDSA算法灵活性较低、匿名性较弱且分散性不高,性能相对高效的应用实例也十分有限。基于哈希证明系统,文章提出一种适用于区块链的两方椭圆曲线数字签名算法。通过给定签名算法的数理逻辑及其安全模型,融入区块链进行测评,证明了方案的可行性。最后,对签名方案的安全性进行了分析,证实该方案无需交互性安全假设便可在零知识性的基础上减少通信开销。Elliptic curve signature ECDSA is one of the common digital signatures in blockchain cryptography technology,which has been widely used in cryptocurrency,key identity authentication,etc.However,current blockchain ECDSA algorithm is inflexible,weakly anonymous and poorly decentralized,and have limited examples of relatively highperforming applications.This study intended to propose a two-party elliptic curve signature suitable for blockchain with the help of Hash proof systems.Given the mathematical logic of the signature algorithm and its security model,its incorporation into the blockchain was evaluated to show the feasibility of the scheme.Finally,the security of the signature scheme was analyzed,and a simulation-based security proof was used to demonstrated that the scheme did not require interactive security assumptions and can reduce the overhead in communication with zero knowledge proof.
关 键 词:哈希证明系统 椭圆曲线数字签名算法 区块链 安全性证明 隐私保护
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.227.228.218