基于机器学习的Android恶意软件检测实验  被引量:6

Android malware detection experiment based on machine learning

在线阅读下载全文

作  者:陈镭 杨章静 黄璞 CHEN Lei;YANG Zhangjing;HUANG Pu(Experimental Center,Nanjing Audit University,Nanjing 211815,China;School of Information Engineering,Nanjing Audit University,Nanjing 211815,China;State Key Laboratory for Novel Software Technology,Nanjing University,Nanjing 210232,China)

机构地区:[1]南京审计大学实验中心,江苏南京211815 [2]南京审计大学信息工程学院,江苏南京211815 [3]南京大学计算机软件新技术国家重点实验室,江苏南京210232

出  处:《实验技术与管理》2020年第12期94-97,共4页Experimental Technology and Management

基  金:国家自然科学基金(U1831127);物联网产业化与智能生产协同创新中心(闽江学院)基金(IIC1705);南京审计大学高教研究课题(2020JG049)。

摘  要:针对传统Android恶意软件检测技术准确率不足的问题,该文设计并用实验验证了一种基于机器学习的Android恶意软件检测方法。首先提取Android应用的一些关键静态特征,生成对应的特征向量,然后采用机器学习算法构建并训练模型,最后对待测Android应用软件进行分类检测。实验结果表明,在使用相同数据集的情况下,支持向量机(SVM)算法取得了96.4%的检测率,略高于逻辑回归、朴素贝叶斯、决策树算法。通过实验,不仅使学生对Android应用软件有了更清晰的认识,还提升了学生用机器学习方法分析和解决实际问题的能力。In view of the problem that the detection accuracy of traditional Android malware detection technology is insufficient,a machine learning based Android malware detection method is designed and tested.Firstly,the key static features of Android applications are extracted,and the corresponding feature vectors are generated.Then,the model is trained by machine learning algorithm.Finally,the Android applications are classified and detected.Experimental results show that with the same data set,the detection rate of SVM is 96.4%,which is slightly higher than the logistic regression,naive Bayes and decision tree algorithm.Through the experiment,it not only enables students to get a clearer understanding of Android application software,but also improves their ability to analyze and solve practical problems with machine learning methods.

关 键 词:ANDROID应用 恶意软件 机器学习 WEKA平台 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象