检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Amir Hossein Saeedi Dehaghani Mohammad Hasan Badizad
机构地区:[1]Petroleum Engineering Group,Department of Chemical Engineering,Tarbiat Modares University,Tehran,Iran [2]Department of Chemical and Petroleum Engineering,Sharif University of Technology,Tehran,Iran
出 处:《Petroleum》2017年第4期447-453,共7页油气(英文)
摘 要:Density is an important property of natural gas required for the design of gas processing and reservoir simulation.Due to expensive measurement of density,industry tends to predict gas density through an EOS.However,all EOS are associated with uncertainties,especially at highpressure conditions.Also,using sophisticated EOS in commercial software renders simulation highly time-consuming.This work aims to evaluate performance of adaptive neuro-fuzzy inference system(ANFIS)as a widely-accepted intelligent model for prediction of P-r-T behavior of natural gas.Using experimental data reported in the literature,our inference system was trained with 95 data of natural gas densities in the temperature range of(250-450)K and pressures up to 150 MPa.Additionally,prediction by ANFIS was compared with those of AGA8 and GERG04 which both are leading industrial EOS for calculation of natural gas density.It was observed that ANFIS predicts natural gas density with AARD%of 1.704;and is able to estimate gas density as accurate as sophisticated EOS.The proposed model is applicable for predicting gas density in the range of(250-450)K,(10-150)MPa and also for sweet gases,i.e.,containing a low concentration of N2 and CO2.
关 键 词:Natural gas DENSITY Fuzzy inference system Intelligent modelling Equation of state
分 类 号:TP1[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.48