基于负序功率方向比较和模糊C均值聚类的电网故障区域识别  

Power Grid Fault Region Identification Based on Negative Sequence Power Direction Comparison and Fuzzy C-means Clustering

在线阅读下载全文

作  者:傅利 刘亚磊 王巍横 罗易桥 FU Li;LIU Yalei;WANG Weiheng;LUO Yiqiao(State Grid Sichuan Electric Power Company Skills Training Center,Chengdu 610072,China)

机构地区:[1]国网四川省电力公司技能培训中心,四川成都610072

出  处:《电工技术》2021年第1期18-21,23,共5页Electric Engineering

摘  要:提出了一种负序功率方向比较原理与模糊C均值聚类相结合的电网故障区域判别方法。该方法首先根据各智能电子设备提供的状态信息构成特征向量,作为聚类算法的输入,然后对聚类结果进行分析,IED元件最少的一类为故障元件组,最后通过IED关联规则及负序功率方向比较原则得到故障元件。在容错性方面,对保护状态信息不准确和缺失都进行了分析。仿真试验结果表明,该方法在故障区域判别方面具有较高的容错性和定位精度。A power grid fault area identification method combining the principle of negative sequence power direction comparison and fuzzy C-means clustering was proposed.Firstly,the feature vector was constructed according to the state information provided by intelligent electronic devices,which was used as the input of clustering algorithm,and then the clustering results were analyzed.The smallest type of IED components was the faulty component group.Finally,the faulty components were obtained through the IED association rules and the principle of negative sequence power direction comparison.In terms of fault tolerance,the inaccuracy and lack of protection status information were analyzed.Simulation test results showed that this method had high fault tolerance and positioning accuracy in identifying fault areas.

关 键 词:故障区域识别 模糊C均值聚类 负序功率方向 容错性 

分 类 号:TM711[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象