检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜永兴[1] 牛丽静 秦岭 李宝山[1] Du Yongxing;Niu Lijing;Qin Ling;Li Baoshan(School of Information Engineering,Inner Mongolia University of Science and Technology,Baotou 014010,Inner Mongolia,China)
机构地区:[1]内蒙古科技大学信息工程学院,内蒙古包头014010
出 处:《计算机应用与软件》2021年第2期50-53,57,共5页Computer Applications and Software
基 金:国家自然科学基金项目(61661044);内蒙古科技大学创新基金项目-优秀青年科学基金项目(2017YQL10);内蒙古自治区高等学校青年科技英才计划项目(NJYT-19-A15)。
摘 要:传统的TF-IDF(Term Frequency&Inverse Documentation Frequency)算法提取的关键词不能合理地代表某疾病的症状,降低智能诊断系统的性能。对此,提出一种改进的TF-IDF算法,并将其应用在牛疾病诊断系统中。系统将用户描述的文本内容转换成向量的形式,用TF-IDF算法提取关键症状词,利用余弦定理和可信度计算给出可靠的疾病推荐和治疗方案。实验结果表明,该算法在疾病诊断中准确率和可信度两方面都具有更好的效果。与传统TF-IDF算法相比,平均可信度提高约4%。The of the keywords extracted by the traditional TF-IDF(Term Frequency&Inverse Documentation Frequency)algorithm can not reasonably represent the symptoms of disease,thus reducing the performance of intelligent diagnostic systems.In response to this situation,an improved TF-IDF algorithm is proposed and applied in the cattle disease diagnosis system.The system converted the text content described by the user into a vector form,extracted the key symptom words by TF-IDF algorithm,and used the cosine theorem and credibility calculation to give a reliable disease recommendations and treatment plans.The experimental results show that the algorithm has better effects in both disease accuracy and credibility.The average credibility is improved by about 4%compared with the traditional TF-IDF algorithm.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222