检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄冬梅 林孝镶 胡安铎 孙锦中 HUANG Dongmei;LIN Xiaoxiang;HU Anduo;SUN Jinzhong(College of Electronics and Information Engineering,Shanghai University of Electric Power,Shanghai 200090,China;College of Electrical Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
机构地区:[1]上海电力大学电子与信息工程学院,上海市200090 [2]上海电力大学电气工程学院,上海市200090
出 处:《电力建设》2021年第1期132-138,共7页Electric Power Construction
基 金:中国极地研究中心项目(H2019-203);上海市科委地方院校能力建设项目(20020500700)。
摘 要:负荷聚类是电力大数据分析的重要基础。针对高维日负荷数据时序特征提取困难,以及特征提取与聚类处理分离降低负荷聚类准确性的问题,文章提出了一种基于一维卷积自编码器的日负荷深度嵌入聚类方法(deep embedding clustering method based on one dimensional convolutional auto-encoder,DEC-1D-CAE)。首先,采用一维卷积自编码器网络提取负荷曲线蕴含的时序特征。然后,利用自定义聚类层对所提取的负荷特征向量进行软划分。最后,采用KL散度(Kullback-Leibler divergence,KLD)为损失函数,联合优化卷积自编码器与聚类层,得到聚类结果。算例分析表明所提方法在DBI(Davies-Bouldin index)、CHI(Calinski-Harabasz index)指标上均优于K-means、1D-CAE+K-means、基于堆叠式编码器的深度嵌入聚类方法(deep embedding clustering method based on stacked auto-encoder,DEC-SAE),所提方法可以有效提升日负荷聚类的准确性。Clustering of load data is an important foundation for analyzing electrical big data.Aiming at the difficulty of extracting sequential features of high-dimensional daily load data,and the reduction of accuracy of load clustering due to the separation of feature extraction and clustering processing,a deep embedding clustering method based on one dimensional convolutional auto-encoder(DEC-1 D-CAE) is proposed for daily load data in this paper.Firstly, a one-dimensional convolutional auto-encoder is used to extract sequential features contained in the load curve.Then,a user-defined clustering layer is used for soft division of the extracted load feature vector.Finally,the Kullback-Leibler divergence(KLD) is used as loss function to jointly optimize convolutional auto-encoder and the clustering layer to obtain the clustering result.A numerical experiment were carried out and the results of the proposed method are better than K-means,1D-CAE + K-means and DEC-1 DCAE on both Davies-Bouldin index(DBI) and Calinski-Harabasz index(CHI),which indicate that the proposed method can effectively improve the accuracy of daily load clustering.
关 键 词:负荷聚类 卷积自编码器(CAE) 深度嵌入聚类方法(DEC) 时序特征提取
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28