车联网中基于非正交多址接入的簇重叠区域性能改进  被引量:5

Performance Improvement of Cluster Overlap Region Based on Non-orthogonal Multiple Acess for Internet of Vehicles Network

在线阅读下载全文

作  者:顾金媛[1,2] 章国安 张鸿来[1] GU Jin-yuan;ZHANG Guo-an;ZHANG Hong-lai(Kangda College,Nanjing Medical University,Lianyungang 222000,China;School of Information Science and Technology,Nantong University,Nantong 226019,China)

机构地区:[1]南京医科大学康达学院,连云港222000 [2]南通大学信息科学技术学院,南通226019

出  处:《科学技术与工程》2021年第3期1052-1058,共7页Science Technology and Engineering

基  金:国家自然科学基金(61971245);江苏省第十六批“六大人才高峰”高层次人才选拔培养C类资助项目(XYDXX-245);江苏高校“青蓝工程”资助项目;连云港市第六期“521高层次人才培养工程”培养对象资助项目。

摘  要:由于车辆的高移动性和有限的移动范围,车辆分簇被认为是提高道路交通效率的一种有效方法。为了支持车联网中不断增长的业务量,提出了一种基于非正交多址接入技术的簇重叠区域(cluster overlap region with non-orthogonal multiple access,COR-NOMA)性能改进方案,该方案在目的车辆处利用最大比率合并(maximum ratio combining, MRC)来改进遍历和速率(sum-rate, SR),能有效降低相邻两个簇间冲突概率和传输延迟。分析了独立瑞利衰落信道下该方案的可达平均SR,并给出了其闭式表达式。数值结果验证了理论分析的正确性,所提出的COR-NOMA叠加编码信号传输方案能显著改善V2X(Vehicle to Everything)网络中车辆SR的性能。Due to the high mobility and limited moving range of vehicles,vehicle clustering is considered as a promising solution to improve road traffic efficiency.In order to support the increasing traffic in Internet of Vehicles,a performance improvement scheme of cluster overlap region based on non-orthogonal multiple access(COR-NOMA)was proposed.In the proposed scheme,a maximum ratio combining(MRC)was utilized at the destination to improve the ergodic sum-rate(SR)and the probability of conflict and transmission delay can be reduced.The achievable average SR of the proposed scheme were analyzed for independent Rayleigh fading channels,and also their closed-form expressions were also provided.Numerical results verify the correctness of the theoretical analysis.The proposed COR-NOMA superimposed coded signal transmission scheme can significantly improve the performance of vehicle SR in vehicle to everything(V2X)network.

关 键 词:车联网 非正交多址接入 V2X 遍历性和速率 

分 类 号:TN929.531[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象