Simulation and projection of climate change using CMIP6 Muti-models in the Belt and Road Region  被引量:4

在线阅读下载全文

作  者:YanRan Lü Tong Jiang YanJun Wang BuDa Su JinLong Huang Hui Tao 

机构地区:[1]Institute for Disaster Risk Management/School of Geographical Sciences,Nanjing University of Information Science&Technology,Nanjing,Jiangsu 210044,China [2]State Key Laboratory of Desert and Oasis Ecology,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi,Xinjiang 830011,China

出  处:《Research in Cold and Arid Regions》2020年第6期389-403,共15页寒旱区科学(英文版)

基  金:This study was cooperatively funded by National Key Research and Development Program of ChinaMOST(2018FY100501);The authors are thankful for the support by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20_0957);High-level Talent Recruitment Program of the Nanjing University of Information Science and Technology(NUIST),and the Guest Professor Program of the Xinjiang Institute of Ecology and Geography,CAS.The authors would like to thank the World Climate Research Program's working group on coupled modeling and European Centre for Medium-Range Weather Forecasts for producing and making available their model output.

摘  要:Climate condition over a region is mostly determined by the changes in precipitation,temperature and evaporation as the key climate variables.The countries belong to the Belt and Road region are subjected to face strong changes in future climate.In this paper,we used five global climate models from the latest Sixth Phase of Coupled Model Intercomparison Project(CMIP6)to evaluate future climate changes under seven combined scenarios of the Shared Socioeconomic Pathways and the Representative Concentration Pathways(SSP1-1.9,SSP1-2.6,SSP2-4.5,SSP3-7.0,SSP4-3.4,SSP4-6.0 and SSP5-8.5)across the Belt and Road region.This study focuses on undertaking a climate change assessment in terms of future changes in precipitation,air temperature and actual evaporation for the three distinct periods as near-term period(2021−2040),mid-term period(2041−2060)and long-term period(2081−2100).To discern spatial structure,Köppen−Geiger Climate Classification method has been used in this study.In relative terms,the results indicate an evidence of increasing tendency in all the studied variables,where significant changes are anticipated mostly in the long-term period.In addition to,though it is projected to increase under all the SSP-RCP scenarios,greater increases will be happened under higher emission scenarios(SSP5-8.5 and SSP3-7.0).For temperature,robust increases in annual mean temperature is found to be 5.2°C under SSP3-7.0,and highest 7.0°C under SSP5-8.5 scenario relative to present day.The northern part especially Cold and Polar region will be even more warmer(+6.1°C)in the long-term(2081−2100)period under SSP5-8.5.Similarly,at the end of the twenty-first century,annual mean precipitation is inclined to increase largely with a rate of 2.1%and 2.8%per decade under SSP3-7.0 and SSP5-8.5 respectively.Spatial distribution demonstrates that the largest precipitation increases are to be pronounced in the Polar and Arid regions.Precipitation is projected to increase with response to increasing warming most of the regions.F

关 键 词:precipitation temperature actual evaporation multi-models CMIP6 SSPs-RCPs Belt and Road Region 

分 类 号:P467[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象