检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗长银 陈学斌 马春地 王君宇 LUO Changyin;CHEN Xuebin;MA Chundi;WANG Junyu(School of Science,North China University of Science and Technology,Tangshan Hebei 063210,China;Hebei Key Laboratory of Data Science and Applications(North China University of Science and Technology),Tangshan Hebei 063210,China;Tangshan Data Science Laboratory(North China University of Science and Technology),Tangshan Hebei 063210,China)
机构地区:[1]华北理工大学理学院,河北唐山063210 [2]河北省数据科学与应用重点实验室(华北理工大学),河北唐山063210 [3]唐山市数据科学重点实验室(华北理工大学),河北唐山063210
出 处:《计算机应用》2021年第2期363-371,共9页journal of Computer Applications
基 金:国家自然科学基金资助项目(61572170,61170254);唐山市科技项目(18120203A)。
摘 要:针对传统数据处理技术存在模型过时、泛化能力减弱以及并未考虑多源数据安全性的问题,提出一种面向区块链的在线联邦增量学习算法。该算法将集成学习与增量学习应用到联邦学习的框架下,使用stacking集成算法来整合多方本地模型,且将模型训练阶段的模型参数上传至区块链并快速同步,使得在建立的全局模型准确率仅下降1%的情况下,模型在训练阶段与存储阶段的安全性均得到了提升,降低了数据存储与模型参数传输的成本,同时也降低了因模型梯度更新造成数据泄漏的风险。实验结果表明,在公开的数据集上进行训练,各时间段内模型的准确度均在91.5%以上,且方差均低于10^-5;与传统整合数据训练模型相比,该模型在准确率上略有下降,但能够在保证模型准确率的同时提高数据与模型的安全性。As generalization ability of the out-dated traditional data processing technology is weak,and the technology did not take into account the multi-source data security issues,a blockchain oriented online federated incremental learning algorithm was proposed.Ensemble learning and incremental learning were applied to the framework of federated learning,and stacking ensemble algorithm was used to integrate the local models and the model parameters in model training phase were uploaded to the blockchain with fast synchronization.This made the accuracy of the constructed global model only fall by 1%,while the safety in the stage of training and the stage of storage was improved,so that the costs of the data storage and the transmission of model parameters were reduced,and at the same time,the risk of data leakage caused by model gradient updating was reduced.Experimental results show that the accuracy of the model is over 91.5%and the variance of the model is lower than 10^-5,and compared with the traditional integrated data training model,the model has the accuracy slightly reduced,but has the security of data and model improved with the accuracy of the model guaranteed.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.116