A Contour Integral Method for Linear Differential Equations in Complex Plane  

在线阅读下载全文

作  者:GAO Le WANG Wenshuai 

机构地区:[1]School of Mathematics and Statistics,Ningxia University,Yinchuan 750021,Ningxia,China

出  处:《Wuhan University Journal of Natural Sciences》2020年第6期489-495,共7页武汉大学学报(自然科学英文版)

基  金:Supported by the National Natural Science Foundation of China(11561055);the Natural Science Foundation of Ningxia(2018AAC03057)。

摘  要:This paper presents the contour integral method for solving the linear constant coefficient ordinary differential equations in complex plane,and obtains the uniform expressions of the general solutions.Firstly,by using Residue Theorem,the general form of the contour integral representation for the homogeneous complex differential equation is obtained,which can be degenerated to classical results in real line.As for inhomogeneous complex differential equations with constant coefficients,we construct the integral expression of the particular solution for any continuous forcing term,and give rigorous proof via Residue Theorem.Thus the general solutions of inhomogeneous complex differential equations are also given.The main purpose of this paper is to give a foundation for a complete theory of linear complex differential equations with constant coefficients by a contour integral method.The results can not only solve the inhomogeneous complex differential equation well,but also explain the forms that are difficult to be understood in the classical solutions.

关 键 词:complex differential equation contour integral method Residue Theorem general solution particular solution 

分 类 号:O174.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象