Rail Flatness and Verticality Measurement System Based on Ruler Model  

在线阅读下载全文

作  者:YANG Haima ZOU Xinglin ZHOU Zhendong ZHANG Dawei YANG Yutuan LI Jun QIAN Longping JIANG Shenghua 

机构地区:[1]School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China [2]Shanghai Ruinu Machinery Crop,Shanghai 200120,China

出  处:《Wuhan University Journal of Natural Sciences》2020年第6期547-554,共8页武汉大学学报(自然科学英文版)

基  金:Supported by the National Natural Science Foundation of China(U1831133);Shanghai Natural Science Foundation(17ZR1443500);Baoshan Science and Technology Innovation Special Fund(17-C-21)。

摘  要:Currently,the manual contact rail measurement that was basically adopted in China has low detection efficiency,poor accuracy and poor stability.In order to improve the function of the system,we propose a non-contact measurement method based on the flatness and verticality ruler model.The flatness measurement model was built by employing the string measurement method.In addition,the verticality measurement model was built by the dihedral method to measure the rail comprehensively.By extracting curvature information of feature points,in this system,each laser sensor is used to collect rail profile curves.A large number of three-dimensional point clouds data are generated by the unit quaternion method of coordinate transformation,and the contour curves of the characteristic points of the four laser sensors are matched with the corresponding point sets one to one,and the rail contour splicing is finally completed.The experimental results show that this method has better measurement effect compared with the traditional manual measurement method.

关 键 词:laser profiler point cloud splicing verticality measurement flatness measurement rail quality evaluation ruler model NON-CONTACT 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象