SUPERCONVERGENCE ANALYSIS OF LOW ORDER NONCONFORMING MIXED FINITE ELEMENT METHODS FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS  

在线阅读下载全文

作  者:Huaijun Yang Dongyang Shi Qian Liu 

机构地区:[1]School of Mathematics,Zhengzhou University of Aeronautics,Zhengzhou 450046,China [2]School of Mathematics and Statistics,Zhengzhou University,Zhengzhou 450001,China

出  处:《Journal of Computational Mathematics》2021年第1期63-80,共18页计算数学(英文)

基  金:This work is supported by National Natural Science Foundation of China(Nos.11671369,11271340).

摘  要:In this paper,the superconvergence properties of the time-dependent Navier-Stokes equations are investigated by a low order nonconforming mixed finite element method(MFEM).In terms of the integral identity technique,the superclose error estimates for both the velocity in broken H-norm and the pressure in L2-norm are first obtained,which play a key role to bound the numerical solution in Lx-norm.Then the corresponding global superconvergence results are derived through a suitable interpolation postprocessing approach.Finally,some numerical results are provided to demonstrated the theoretical analysis.

关 键 词:Navier-Stokes equations Nonconforming MFEM Supercloseness and super-convergence. 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象