基于H.265的云机器人图像采集系统设计与实现  被引量:4

Design and implementation of cloud robot image acquisition system based on H.265

在线阅读下载全文

作  者:蔡增玉 王文倩 赵振宇[2] 张建伟 冯媛 CAI Zengyu;WANG Wenqian;ZHAO Zhenyu;ZHANG Jianwei;FENG Yuan(College of Computer and Communication Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002,China;School of Information and Communications Engineering,Xi’an Jiaotong University,Xi’an 710049,China;College of Software Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002,China)

机构地区:[1]郑州轻工业大学计算机与通信工程学院,河南郑州450002 [2]西安交通大学信息与通信工程学院,陕西西安710049 [3]郑州轻工业大学软件学院,河南郑州450002

出  处:《现代电子技术》2021年第5期66-69,共4页Modern Electronics Technique

基  金:国家自然科学基金资助项目(61672471);河南大学科技创新团队(18IRTSTHN012)。

摘  要:针对传统机器人图像采集系统受限于本地处理计算能力有限,导致视频分辨率低、图像质量差等问题,提出一种云机器人图像采集系统。其中,本地机器人负责采集500万像素超高清视频、H.265编码压缩、搭建流媒体服务器,将视频通过无线网络传送至云端,云端负责做复杂计算、流媒体分发等服务,并实现了在PC、手机客户端中播放视频、截屏、录像等功能。最后,对系统传输延时和编码性能进行了测试。测试结果表明,相比H.264编码技术,本系统能够有效节省46%以上的网络带宽,且图像的PSNR值更高。Due to the limited local processing and computing capacity,the traditional robot image acquisition system has low video resolution and poor image quality,so a cloud robot image acquisition system is proposed.In the system,the local robot is responsible for collecting 5 million⁃pixel ultra⁃high⁃definition video,implementing H.265 encoding compression,building the streaming media server,and transmitting the video to the cloud by wireless network.The cloud is responsible for the services of complex computing and streaming media distribution,and for the realization of the functions of video playing,screen capturing and video recording in PC and mobile client.Finally,the transmission delay and encoding performance of the system were tested.The test results show that,in comparison with the H.264 encoding technology,the system can effectively save more than 46%of the network bandwidth,and has higher PSNR(peak signal⁃to⁃noise ratio)value of the image.

关 键 词:云计算 云机器人 图像采集 H.256编解码技术 视频压缩 流媒体分发 系统测试 

分 类 号:TN911.73-34[电子电信—通信与信息系统] TP242[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象