检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马昊 马晓悦 Ma Hao;Ma Xiaoyue(Xidian University,Xi'an 710071,China;Xi’an Jiaotong University,Xi’an 710049,China)
机构地区:[1]西安电子科技大学,陕西西安710071 [2]西安交通大学,陕西西安710049
出 处:《现代情报》2021年第2期30-41,共12页Journal of Modern Information
基 金:教育部人文社会科学研究规划基金“信息协同视角下基于可视化媒介的智慧应急响应行为研究”(项目编号:19YJA870009);陕西省自然科学基础研究计划一般项目-面上项目“基于散射-叠加效应的新媒体信息演化模型构建及事件类别判定研究”(项目编号:2020JM-056);中央高校基本科研业务费(人文社科)学科交叉项目“社交媒体图像作用下的网络重提事件多维信息迁移演化及舆情预警机制研究”(项目编号:SK2021037)。
摘 要:[目的/意义]现有新媒体事件的聚类研究聚焦于事件的单一维度属性,并未考虑事件传播的网络结构特征和文本分布特征。[方法/过程]本研究基于信息熵的相关概念,提出基于网络结构熵与内容分布熵的事件聚类模型。模型在表征事件网络结构特征、内容分布特征的基础上完成跨内容事件相似度对比,并使用图表示学习算法与k-means聚类算法对事件进行分析与聚类。本文选取113例微博事件作为实验对象,并使用事件基本属性(点赞、评论、转发等)作为聚类对照实验组。[结论/发现]实验结果分析表明,本研究提出的模型能够捕捉到新媒体事件更深层次的传播、分布特征,能够对现有相似度计算指标进行完善与补充。[创新/价值]本研究不仅能够从多维度层次提取事件的传播特征,即事件网络结构特征和内容分布特征,还能够为舆情预测、管控提供支持,通过熵维度的信息变化监测不同事件之间的传播共性,辅助后续舆情事件的预测与监管。[Purpose/Significance] The existing clustering research of new media events focuses on the single-dimensional attributes of events,and does not consider the network structure characteristics and text distribution characteristics of event propagation. [Method/Process] This research was inspired by the concept of information entropy,and proposed an event clustering model based on network structure entropy and content distribution entropy. The model completed cross-content event similarity comparison on the basis of characterizing event network structure characteristics and content distribution characteristics,then Network Representation Learning algorithm and k-means clustering algorithm cluster the events. This paper selected 113 microblog events as the experimental objects,and used the basic attributes of the events( likes,comments,reposts,etc.) as the cluster control experimental group. [Results/Conclusion] The analysis of the experimental results showed that the model proposed in this study could capture the deeper communication and distribution characteristics of new media events. At the same time,it could improve and supplement existing similarity calculation indicators. [Originality/Value] This research can not only extract the propagation characteristics of the event from multi-dimensional levels,that is,the characteristics of the event network structure and the distribution of event content. Also it can provide support for public opinion prediction and control. The model can also monitor the communication commonality between different events through the entropy dimension of information changes to assist subsequent reflection on public opinion events.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49