熵率超像素分割一致性检验视差细化算法  被引量:2

Disparity OptimizationAlgorithm Using Entropy Rate Super-Pixel Segmentation Consistency Check

在线阅读下载全文

作  者:张忠民[1] 刘金鑫 席志红[1] ZHANG Zhongmin;LIU Jinxin;XI Zhihong(College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China)

机构地区:[1]哈尔滨工程大学信息与通信工程学院,哈尔滨150001

出  处:《计算机工程与应用》2021年第5期204-209,共6页Computer Engineering and Applications

基  金:国家自然科学基金(60875025)。

摘  要:针对传统分割一致性检验视差细化算法处理低纹理图片时优化效果较差的问题,提出一种基于熵率超像素分割的改进方法,使用基于熵率的超像素分割算法代替均值漂移(Mean-shift)分割算法。针对参考图像进行超像素分割处理;将每一个分割块进行统计分析,根据集中趋势值筛选可信值与不可信值;进行视差填充处理获得最终优化后的视差图。选取15组Middlebury数据集中的图像对进行视差图获取并检测。实验结果表明,基于熵率超像素分割的改进方法对于低纹理图片和纹理复杂的图片都有着较好的优化效果,该算法平均误匹配率较传统算法最多降低了5.88个百分点。Aiming that the accuracy problems in texture lacking images when using the traditional approach,an improved method based on entropy rate super-pixel segmentation is proposed.The Mean-shift algorithm is replaced by the entropy rate super-pixel segmentation algorithm.Firstly,the reference image is segmented into super pixels.Then,statistical analysis is carried out for each segment so that the trusted and untrusted values can be screened according to the central tendency value.Finally,the disparity map is obtained by holes filling.Fifteen groups of images in Middlebury datasets are selected for disparity acquisition and detection.The experimental result shows that,this improved method has a good optimization effect for both texture lacking images and complex texture images,the average mismatching rate of this algorithm is 5.88 percentage points lower than that of the traditional algorithm.

关 键 词:分割一致性检验 立体匹配 超像素分割 视差精化 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象