检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴光强[1] 陶义超 曾翔 WU Guangqiang;TAO Yichao;ZENG Xiang(School of Automotive Studies,Tongji University,Shanghai 201804,China)
机构地区:[1]同济大学汽车学院,上海201804
出 处:《同济大学学报(自然科学版)》2021年第2期272-279,共8页Journal of Tongji University:Natural Science
基 金:国家自然科学基金(U1764259)。
摘 要:针对基于模型以及基于规则的故障诊断方法的局限性,运用数据驱动的方法对变速器传感器进行故障诊断。使用逐步回归算法建立传感器模型,将实际传感器输出与传感器模型输出相减得到残差序列;用小波包变换(WPT)对残差序列进行分解,提取节点的香农熵作为特征值;最后,用概率神经网络(PNN)对不同传感器故障的特征值进行识别。使用硬件在环仿真获取车辆行驶过程中的变速器信号对该方法进行验证。结果表明:该方法的诊断正确率达到98.50%,在不同的样本划分情况下诊断正确率变化很小。此外,还对其他多个变速器传感器进行了故障诊断,诊断正确率均在较高值,证明了该方法的普适性。Aiming at the limitations of model-based and rule-based fault diagnosis methods,a data-driven fault diagnosis method for transmission sensors was proposed.First,a residual sequence was obtained between the output of actual sensor and the output of sensor model established by step-wise regression.Then,the residual sequence was decomposed by wavelet packet transform(WPT),and the Shannon entropy of each node was calculated as the feature values.Finally,a probabilistic neural network(PNN)was adopted to identify the feature values of different sensor faults.This method is verified by transmission signals from hardware-in-the-loop platform.Results indicate that the method has a diagnostic accuracy of 98.50%,and the diagnostic accuracy varies little under different sample divisions.In addition,the fault diagnoses of two speed sensors were also performed,and the diagnostic accuracy is at a relatively high value,which proves the applicability of the method.
关 键 词:变速器故障诊断 数据驱动方法 传感器模型 小波包变换(WPT) 概率神经网络(PNN)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3