Kernel-blending connection approximated by a neural network for image classification  被引量:5

在线阅读下载全文

作  者:Xinxin Liu Yunfeng Zhang Fangxun Bao Kai Shao Ziyi Sun Caiming Zhang 

机构地区:[1]Shandong University of Finance and Economics,Jinan 250014,China [2]Shandong University,Jinan 250100,China

出  处:《Computational Visual Media》2020年第4期467-476,共10页计算可视媒体(英文版)

基  金:the National Natural Science Foundation of China(Grant Nos.61972227 and 61672018);the Natural Science Foundation of Shandong Province(Grant No.ZR2019MF051);the Primary Research and Development Plan of Shandong Province(Grant No.2018GGX101013);the Fostering Project of Dominant Discipline and Talent Team of Shandong Province Higher Education Institutions。

摘  要:This paper proposes a kernel-blending connection approximated by a neural network(KBNN)for image classification.A kernel mapping connection structure,guaranteed by the function approximation theorem,is devised to blend feature extraction and feature classification through neural network learning.First,a feature extractor learns features from the raw images.Next,an automatically constructed kernel mapping connection maps the feature vectors into a feature space.Finally,a linear classifier is used as an output layer of the neural network to provide classification results.Furthermore,a novel loss function involving a cross-entropy loss and a hinge loss is proposed to improve the generalizability of the neural network.Experimental results on three well-known image datasets illustrate that the proposed method has good classification accuracy and generalizability.

关 键 词:image classification blending neural network function approximation kernel mapping connection GENERALIZABILITY 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象