检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑泰皓 王庆涛 李家国 郑逢斌[1] 张永红 张宁 ZHENG Tai-hao;WANG Qing-tao;LI Jia-guo;ZHENG Feng-bin;ZHANG Yong-hong;ZHANG Ning(School of Computer and Information Engineering,Henan University,Kaifeng 475000,China;Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100020,China;Urban and Rural Planning Management Center of the Ministry of Housing and Urban-Rural Development of the People s Republic of China,Beijing 100835,China)
机构地区:[1]河南大学计算机与信息工程学院,开封475000 [2]中国科学院遥感与数字地球研究所,北京100020 [3]中华人民共和国住房和城乡建设部城乡管理规划中心,北京100835
出 处:《科学技术与工程》2021年第4期1459-1470,共12页Science Technology and Engineering
基 金:国家重点研发计划(2017YFB0503902);高分辨率对地观测系统重大专项(30-Y20A07-9003-17/18);民用航天预研项目(B0301)。
摘 要:为了探究高分六号(GF-6)卫星多光谱相机(PMS)影像提取水体的潜力,分别构建全卷积神经网络(FCN-8s)、U-Net及U-Net优化(VGGUnet1、VGGUnet2)4种神经网络进行了水体提取研究。基于水体提取结果对比分析,确定优选模型为VGGUnet1;提出基于组合损失函数FD-water loss(focal-dice-water loss)的VGGUnet1网络模型,并与归一化差分水指数(norma-lized water index,NDWI)阈值法、最大似然分类法、支持向量机分类法等方法比较。结果表明:基于FD-water loss损失函数的VGGUnet1网络模型能有效提取水体目标,增强小面积水体识别能力,减少水体错分、漏分现象,提高水体提取效果。可见全卷积神经网络在GF-6遥感影像水体提取方面具有可行性,为后续该领域的进一步研究应用提供了参考。In order to study the potential of water extraction from multispectral camera(PMS)images of GF-6,four kinds of neural networks,including full convolutional neural network(FCN-8s),U-Net and U-Net optimization(VGGUnet1,VGGUnet2),were constructed for water extraction studies.Based on the water extraction results,the best model was determined as VGGUnet1;then a VGGUnet1 network model based on the combined loss function Focal-Dice-Water loss(FD-Water loss)was proposed.Compared with the normalized water index(NDWI)threshold method,maximum likelihood classification method,and support vector machine classification method,the results show that the VGGUnet1 network model based on the FD-Water loss function can effectively extract the water body target,enhance the recognition ability of the water body in a small area,reduce the misdivision and leakage of the water body,and improve the extraction effect of the water body.It is concluded that the full convolutional neural network is feasible in water extraction of GF-6 remote sensing images,which provides a reference for further research and application in this field.
关 键 词:高分六号影像 水体提取 FD-water loss VGGUnet1
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222