检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiaolei Yuan Yiqun Pan Jianrong Yang Weitong Wang Zhizhong Huang
机构地区:[1]School of Mechanical Engineering,Tongji University,4800 Cao’an Road,Shanghai,201804,China [2]Shanghai Research Institute of Building Sciences,Shanghai,China [3]Kuaishou Co.Ltd.,Beijing,China [4]Sino-German College of Applied Sciences,Tongji University,Shanghai,201804,China
出 处:《Building Simulation》2021年第1期75-87,共13页建筑模拟(英文)
基 金:This study is supported by the Thirteenth Five-Year National Key Research and Development Program“Study on the Technical Standard System for Post-evaluation of Green Building Performance”,Ministry of Science and Technology of China(No.2016YFC0700105).
摘 要:Supervisory control can be used to optimize the HVAC system operation and achieve building energy conservation,while reinforcement learning(RL)is considered as a promising model-free supervisory control method.In this paper,we apply RL algorithm to the operation optimization of air-conditioning(AC)system and propose an innovative RL-based model-free control strategy combining rule-based and RL-based control algorithm as well as complete application process.We use a variable air volume(VAV)air-conditioning system for a single-storey office building as a case study to validate the optimization performance of the RL-based controller.We select control strategies with the rule-based control controller(RBC)and proportional-integral-derivative(PID)controller respectively as the reference cases.The results show that,for the air supply of single zone,the RL controller performs the best in terms of both non-comfortable time and energy costs of AC system after one-year exploration learning.The total energy consumption of AC system reduced by 7.7%and 4.7%,respectively compared with RBC and PID strategies.For the air supply of multi-zone,the performance of RL controller begins to outperform the reference strategies after two-year exploration learning and two-year buffer stage.From the seventh year on,RL controller performs much better in terms of both non-comfortable time and operating costs of AC system,while the operating cost of AC system is reduced by 2.7%to 4.6%compared with the reference strategies.In addition,RL controller is more suitable for small-scale operation optimization problems.
关 键 词:reinforcement learning HVAC system operation optimization control strategy VAV system energy saving
分 类 号:TU83[建筑科学—供热、供燃气、通风及空调工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15