基于改进DenseNet的水果小目标检测  被引量:15

Detection of small fruit target based on improved DenseNet

在线阅读下载全文

作  者:徐利锋[1] 黄海帆 丁维龙[1] 范玉雷[1] XU Li-feng;HUANG Hai-fan;DING Wei-long;FAN Yu-lei(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China)

机构地区:[1]浙江工业大学计算机科学与技术学院,浙江杭州310023

出  处:《浙江大学学报(工学版)》2021年第2期377-385,共9页Journal of Zhejiang University:Engineering Science

基  金:国家自然科学基金资助项目(61571400,61702456);浙江省自然科学基金资助项目(LY18C130012)。

摘  要:针对自然环境中小目标水果的检测精度普遍较低的问题,提出基于DenseNet改进的水果目标检测框架.构建以DenseNet为核心的多尺度特征提取模块,在DenseNet不同层级的稠密块中建立特征金字塔结构,加强网络层特征复用.结合低层特征的高分辨率和高层特征的高语义性,实现准确定位和预测小目标水果存在的目的.引入软阈值非极大值抑制(Soft-NMS)算法,改善簇状果实结构中检测框被误剔除的情况.与常用的Faster R-CNN网络相比,所提出的框架在苹果、芒果和杏3个数据集中的平均检测速度大于40 FPS,F1值分别为0.920、0.928、0.831,实现了检测效率及精度的提升.An improved fruit detection framework based on DenseNet was proposed aiming at the problem that small fruit target detection always obtains low accuracy in natrual environment.A multi-scale feature extraction module was built with DenseNet.A feature pyramid structure was used in dense blocks at different scales of DenseNet in order to strength the network layer feature reuse.Low-level features with high resolution and high-level features with high semantics were combined to achieve accurate localization and prediction of the existence of small fruits.Soft non-maximum suppression(Soft-NMS)algorithm was introduced to avoid the case that detection boxes were mistakenly removed in the clustered fruit structure.In three datasets of apple,mango and almond,the detection speed came up to 40 FPS,and the F1 score reached 0.920,0.928 and 0.831 with the proposed framework.The detection efficiency and accuracy were improved compared with the commonly used Faster R-CNN network.

关 键 词:DenseNet 深度学习 水果小目标检测 特征金字塔网络(FPN) 软阈值非极大值抑制(Soft-NMS) 

分 类 号:TP399[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象