基于自编码器和LSTM的模型降阶方法  被引量:10

Reduced order model based on autoencoder and long short-term memory network

在线阅读下载全文

作  者:武频[1] 孙俊五 封卫兵[1] WU Pin;SUN Junwu;FENG Weibing(Shanghai University,School of Computer Engineering and Science,Shanghai 200444,China)

机构地区:[1]上海大学计算机工程与科学学院,上海200444

出  处:《空气动力学学报》2021年第1期73-81,共9页Acta Aerodynamica Sinica

基  金:上海市自然科学基金(19ZR1417700);空气动力学国家重点实验室开放课题(SKLA20180303)。

摘  要:自编码器是一种有效的数据降维方法,可以学习到数据中的隐含特征,并重构出原始输入数据。本文提出了一种基于多层自编码器和长短期记忆网络的模型降阶方法,以提升降阶模型的精度。文中以二维圆柱绕流为例,对该方法进行了分析与验证。首先用多层自编码器对原始数据进行降阶和特征提取,然后构建基于长短期记忆网络的预测模型,最后将自编码器和预测模型拼接并进行微调,得到降阶模型,并将其与基于主成分分析的降阶模型进行对比。结果表明,多层自编码器能在保证精度的同时提升数据压缩率;提出的降阶方法有效地提升了模型精度,使得预测速度场和原速度场之间的均方根误差降低至3×10^(-3)左右。Autoencoder is an effective dimensionality reduction method that can learn the hidden information and features implicated in the data,and reconstruct the original input data.We propose a model reduction method with improved accuracy based on a multi-layer autoencoder and a long short-term memory network.The method is analyzed and verified through a two-dimensional flow past a cylinder.Firstly,the multi-layer autoencoder is used to reduce the order and extract features of the original data.Then,a prediction model based on a long short-term memory network is established.At last,the autoencoder and the prediction model are spliced into a single network to obtain a fine-tuned reduced order model.This model is further compared with another one based on the principal component analysis.Results show that the multi-layer autoencoder can improve the data compression ratio while ensuring the accuracy.The proposed reduced order method can effectively improve the model accuracy since the root mean square error between the predicted and the original velocity fields is reduced to within 3×10-3.

关 键 词:降阶模型 多层自编码器 长短期记忆 圆柱绕流 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] V211.3[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象