两区域互联电网的神经元变结构PID频率控制  

Frequency Control of Two-area Interconnection Power Grid Based on Neuron Variable Structure PID

在线阅读下载全文

作  者:魏萌 周晓华 WEI Meng;ZHOU Xiao-hua(School of Electrical and Information Engineering,Guangxi University of Science and Technology,Liuzhou 545616,China)

机构地区:[1]广西科技大学电气与信息工程学院,广西柳州545616

出  处:《电力学报》2020年第6期481-488,共8页Journal of Electric Power

基  金:国家自然科学基金项目(61563006);广西科技攻关项目(桂科攻1598008-2)资助。

摘  要:针对基于PID控制的传统互联电网频率控制系统存在调节时间长、自适应能力及鲁棒性差等问题,提出了以PID控制为主控制、神经元变结构PID控制为辅助控制的控制方案,以改善互联电网频率控制系统的控制性能。辅助控制采用一个神经元模型和比例控制实现变结构PID控制,再用另一个神经元模型实现对变结构PID控制器参数K_(p),K_(d)和K_(i)的在线调整功能。在MATLAB/Simulink仿真平台对所提出控制方案的两区域互联电网频率控制系统进行建模和仿真,并与传统PID控制方案进行了对比。结果表明,采用所提出的控制方案可以有效地减小互联电网的频率偏差,加快系统的响应速度,缩短调节时间,具有更好的控制效果。Aiming at the problems of the traditional frequency control system based on PID control,such as,long regulation time,self-adaptive ability and lower controlling robustness,an easily optimized control scheme with PID control with the main control and neuron variable structure PID control as the auxiliary control was proposed to improve the control performance of the frequency control system of interconnected power networks.The auxiliary control adopted one neuron model and proportional control to realize the variable structure PID control,and then uses another neuron model to realize the online adjustment function of the variable structure PID controller parameters K_(p),K_(d) and K_(i).In MATLAB/Simulink simulation platform,the frequency control system of the proposed control scheme is modeled and simulated,and compared with the traditional one.The results show that the proposed control scheme can effectively reduce the frequency deviation of the interconnected power network,accelerate the response speed of the system,shorten the regulation time,and have a better control effect.

关 键 词:自动发电控制 两区域互联电网 神经元变结构PID 频率控制 频率偏差 

分 类 号:TM712[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象