检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘忠宝 秦权[3] 赵文娟 Liu Zhongbao;Qin Quan;Zhao Wenjuan(Key Laboratory of Cloud Computing and Internet-of-Things Technology(Quanzhou University of Information Engineering),Fujian Province University,Quanzhou 362000;Institute of Language Intelligence,Beijing Language and Culture University,Beijing 100083;School of Software,North University of China,Taiyuan 030051)
机构地区:[1]云计算与物联网技术福建省高等学校重点实验室(泉州信息工程学院),泉州362000 [2]北京语言大学语言智能研究院,北京100083 [3]中北大学软件学院,太原030051
出 处:《情报杂志》2021年第2期138-145,共8页Journal of Intelligence
基 金:国家社会科学基金一般项目“大数据环境下面向图书馆资源的跨媒体知识服务研究”(编号:19BTQ012)。
摘 要:[目的/意义]微博作为一种重要的信息传播载体,在疫情信息发布与传播中发挥着重要作用。深入分析疫情信息中蕴含的疫情事件及其对网民情绪的影响,有助于各级政府准确掌握网络舆论情况,科学高效地做好防控宣传和舆情引导工作。[方法/过程]以新冠肺炎疫情相关的微博新闻及其评论作为研究对象,利用条件随机场(Conditional Random Field,CRF)模型从微博新闻中抽取疫情事件并建立疫情事件画像;在情感词典的基础上,引入双向长短期记忆网络(Bidirectional Long Short-Term Memory,Bi-LSTM)模型建立网民情绪画像;利用基于自注意力机制的Bi-LSTM模型对疫情事件与网民情绪进行关联分析。[结果/结论]真实语料集上的实验结果表明,围绕捐资、防控、临床和英雄等主题,CRF模型疫情事件抽取的F值均达到73%以上,Bi-LSTM模型网民情绪识别的F值均在70%以上,基于注意力机制的Bi-LSTM模型给出的网民情绪分布基本符合疫情发展态势。[Purpose/Significance]Since the outbreak of COVID-19,microblog,as an important carrier of information transmission,has played an indispensable role in the release and dissemination of epidemic information.The in-depth analysis of the epidemic information and the impact on the netizen emotion contained in COVID-19 event can help governments grasp the public opinions on the Internet as well as do a good work in epidemic prevention and public opinion guidance efficiently.[Method/Process]Taking the microblog news and its comments related to the COVID-19 as the research object,this paper then uses Conditional Random Field(CRF)model to extract event information and establish an event portrait for the COVID-19,introduces the Bidirectional Long Short-Term Memory(Bi-LSTM)model to build netizen emotional portrait based on sentiment dictionary,and finally analyzes the relationship between epidemic events and netizen emotions by using an attention-based Bi-LSTM model.[Result/Conclusion]The experimental results on the real corpus with the topics of material,prevention and control,clinical and hero show that the F value of the CRF and Bi-LSTM model has reached more than 73% and 70% respectively.The distribution of netizen emotions is basically in line with the epidemic development based on the attention-based Bi-LSTM model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229