ACCELERATED OPTIMIZATION WITH ORTHOGONALITY CONSTRAINTS  被引量:1

在线阅读下载全文

作  者:Jonathan W.Siegel 

机构地区:[1]Department of Mathematics,Pennsylvania State University,University Park,PA,USA

出  处:《Journal of Computational Mathematics》2021年第2期207-226,共20页计算数学(英文)

摘  要:We develop a generalization of Nesterov’s accelerated gradient descent method which is designed to deal with orthogonality constraints.To demonstrate the effectiveness of our method,we perform numerical experiments which demonstrate that the number of iterations scales with the square root of the condition number,and also compare with existing state-of-the-art quasi-Newton methods on the Stiefel manifold.Our experiments show that our method outperforms existing state-of-the-art quasi-Newton methods on some large,ill-conditioned problems.

关 键 词:Riemannian optimization Stiefel manifold Accelerated gradient descent Eigenvector problems Electronic structure calculations 

分 类 号:O22[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象