基于逆深度自适应加权的多视图三角化方法  被引量:1

Inverse Depth Adaptive Weighting Based Multi-View Triangulation Method

在线阅读下载全文

作  者:方维 杨奎[2] Fang Wei;Yang Kui(School of Automation Beijing University of Posts and Telecommunications,Beijing 100876,China;School of Instrumentation Science and Opto-Electronics Engineering Beihang University,Beijing 100191,China)

机构地区:[1]北京邮电大学自动化学院,北京100876 [2]北京航空航天大学仪器科学与光电工程学院,北京100191

出  处:《中国激光》2020年第12期191-198,共8页Chinese Journal of Lasers

基  金:国家重点研发计划(2019YFC0119200);北京市自然科学基金(3204050);虚拟现实技术与系统国家重点实验室开放基金(VRLAB2020B05);中央高校基本科研业务费(2019RC26)。

摘  要:在已知图像观测值和相机内外参数的多视图三角化中,由于观测噪声的存在,导致中点法和L2反投影标准法分别在三角化精度和效率上存在不足。因此,提出了一种基于逆深度自适应加权的多视图三角化方法。首先,通过构建待估计空间三维点在多视图环境下的逆深度模型,赋予不同视点下观测误差对应的自适应权重。然后,确定多视图三角化近似角度误差的无偏估计模型。最后,利用固定点迭代快速求解代价函数。在仿真和实际数据集上的实验结果表明,本方法能很好地平衡多视图三角化的精度和效率,且在不同噪声情况下的重建精度和迭代次数有较强的鲁棒性。In the multi-view triangulation with known image observation values and camera internal and external parameters, due to the existence of observation noise, the midpoint method and the L2 back projection standard method have insufficient triangulation accuracy and efficiency, respectively. Therefore, this paper proposes an inverse depth adaptive weihting based multi-view triangulation method. First, by constructing an inverse depth model of the three-dimensional points to be estimated in a multi-view environment, the corresponding weights to the observation errors are assigned under different viewpoints. Then an unbiased estimation model of the approximate angle error for the multi-view triangulation is determined. Finally, a fixed-point iteration is carried out to quickly solve the cost function. Experimental results both on simulation and real datasets show that the proposed method can obtain a better balance between accuracy and efficiency for multi-view triangulation, and the reconstruction accuracy and the number of iterations under different noise conditions are robust.

关 键 词:图像处理 多视图三角化 逆深度加权 三维重建 迭代优化 

分 类 号:O436[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象