不均衡训练集特征选择的印刷套准状态识别  被引量:1

Printing Registration Recognition Based on Feature Selection of Imbalanced Training Set

在线阅读下载全文

作  者:简川霞[1] 舒治鹏 谢浩喆 周玉淇 王华明 JIAN Chuan-xia;SHU Zhi-peng;XIE Hao-zhe;ZHOU Yu-qi;WANG Hua-ming(School of Electromechanical Engineering,Guangdong University of Technology,Guangzhou 510006,China)

机构地区:[1]广东工业大学机电工程学院,广州510006

出  处:《包装工程》2021年第5期266-272,共7页Packaging Engineering

基  金:广东省信息物理融合系统重点实验室项目(2016B030301008);广东工业大学青年基金重点项目(17QNZD001);大学生创新创业训练项目(xj202011845017,xj202011845015,xj202011845016)。

摘  要:目的针对不均训练集导致印刷套准识别模型无法较好识别印刷套不准图像的问题,提出基于最大相关、最小冗余的印刷标志图像数据特征选择方法。方法提取印刷标志图像的多维特征数据,计算特征与印刷套准和印刷套不准2类之间的相关性和特征之间的冗余度。确定特征选择的目标函数,通过增量搜索方法寻找最优特征,加入特征子集,实现不均衡印刷标志图像的特征选择。结果文中的特征选择方法获得了3项不均衡数据分类性能评价指标,A为0.9900,R为0.9400,Gmean为0.9466。结论在不均衡印刷标志图像套准识别中,文中提出的方法性能优于实验中的未处理方法、PCA方法、Relief方法和NCA方法。The work aims to propose a feature selection method of printing mark images dataset based on max-relevance and min-redundancy in view of that the model of printing registration recognition cannot accurately identify the printing misregistration images due to the imbalanced training set.The multi-dimensional features of printing mark images were extracted,and the correlation between features and printing registration/misregistration and the redundancy between features were calculated.The objective function of feature selection was determined,and the incremental search method was used to find the optimal feature and add the optimal feature to the feature subset,which realized the feature selection of imbalanced printing mark images.The proposed method achieved 3 evaluation indicators of imbalanced data classification,0.9900 of A,0.9400 of R,and 0.9466 of Gmean.The proposed method outperforms the untreated method,the PCA method,the Relief method and the NCA method on the identification of imbalanced printing mark images in the experiment.

关 键 词:不均衡数据 印刷套准 特征选择 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象