检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:简川霞[1] 舒治鹏 谢浩喆 周玉淇 王华明 JIAN Chuan-xia;SHU Zhi-peng;XIE Hao-zhe;ZHOU Yu-qi;WANG Hua-ming(School of Electromechanical Engineering,Guangdong University of Technology,Guangzhou 510006,China)
出 处:《包装工程》2021年第5期266-272,共7页Packaging Engineering
基 金:广东省信息物理融合系统重点实验室项目(2016B030301008);广东工业大学青年基金重点项目(17QNZD001);大学生创新创业训练项目(xj202011845017,xj202011845015,xj202011845016)。
摘 要:目的针对不均训练集导致印刷套准识别模型无法较好识别印刷套不准图像的问题,提出基于最大相关、最小冗余的印刷标志图像数据特征选择方法。方法提取印刷标志图像的多维特征数据,计算特征与印刷套准和印刷套不准2类之间的相关性和特征之间的冗余度。确定特征选择的目标函数,通过增量搜索方法寻找最优特征,加入特征子集,实现不均衡印刷标志图像的特征选择。结果文中的特征选择方法获得了3项不均衡数据分类性能评价指标,A为0.9900,R为0.9400,Gmean为0.9466。结论在不均衡印刷标志图像套准识别中,文中提出的方法性能优于实验中的未处理方法、PCA方法、Relief方法和NCA方法。The work aims to propose a feature selection method of printing mark images dataset based on max-relevance and min-redundancy in view of that the model of printing registration recognition cannot accurately identify the printing misregistration images due to the imbalanced training set.The multi-dimensional features of printing mark images were extracted,and the correlation between features and printing registration/misregistration and the redundancy between features were calculated.The objective function of feature selection was determined,and the incremental search method was used to find the optimal feature and add the optimal feature to the feature subset,which realized the feature selection of imbalanced printing mark images.The proposed method achieved 3 evaluation indicators of imbalanced data classification,0.9900 of A,0.9400 of R,and 0.9466 of Gmean.The proposed method outperforms the untreated method,the PCA method,the Relief method and the NCA method on the identification of imbalanced printing mark images in the experiment.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200