检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王鹏[1] 朱希安[1] 王占刚[1] 刘德民[2] WANG Peng;ZHU Xi′an;WANG Zhangang;LIU Demin(School of Information and Communication Engineering,Beijing Information Science&Technology University,Beijing 100101,China;School of Safety Engineering,North China Institute of Science and Technology,Beijing 101601,China)
机构地区:[1]北京信息科技大学信息与通信工程学院,北京100101 [2]华北科技学院安全工程学院,北京101601
出 处:《北京信息科技大学学报(自然科学版)》2021年第1期40-44,共5页Journal of Beijing Information Science and Technology University
基 金:国家重点研发计划项目(2017YFC0804108);北京市教委科研计划项目(KM201811232010);北京市科技创新服务能力建设-基本科研业务费(市级)(科研类)(PXM2019_014224_000026)。
摘 要:为准确预测煤层底板突水量,提出了一种基于IPSO-SVR(改进的粒子群算法以优化支持向量回归机算法)的煤层底板突水量的预测模型。针对矿井底板突水这种非线性、小样本问题,通过改变粒子群算法的惯性权重因子定义以及引入混沌映射思想的方式,避免算法陷入局部最优值,强化全局搜索。结合王家岭等煤矿突水实例,将水压、含水层、隔水层厚度、底板破坏深度以及断层落差作为影响煤层底板突水量的特征因素,将该预测模型算法与PSO-SVR预测模型算法进行比较。仿真结果表明:该预测模型算法的预测值更接近实际值,具有一定实际应用价值。In order to accurately predict the amount of water inrush from the coal floor,a prediction model of coal floor water inrush based on IPSO-SVR(the improved particle swarm algorithm is used to optimize the support vector regression machine algorithm)is proposed.Aiming at the non-linear and small sample problem of water inrush from coal floor,the definition of the inertia weight factor of the particle swarm algorithm is changed and the method of chaotic mapping is introduced to avoid the algorithm from falling into the local optimum and strengthen the global search.Combined with examples of coal mines such as Wangjialing,the water pressure,aquifer thickness,water barrier thickness,depth of floor failure,and fault drop are taken as the characteristic factors affecting the amount of water inrush from the coal floor.Comparing the prediction model algorithm with the PSO-SVR prediction model algorithm,the simulation results show that the predicted value of the prediction model algorithm is closer to the actual value and has certain practical application value.
关 键 词:矿井突水 IPSO-SVR模型 煤层底板突水量 参数优化
分 类 号:TD745[矿业工程—矿井通风与安全]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7