检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡祥[1,2] 李琦 罗言 齐建东 CAI Xiang;LI Qi;LUO Yan;QI Jiandong(School of Information Science & Technology, Beijing Forestry University, Beijing 100083, China;Engineering Research Center for Forestry-oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China)
机构地区:[1]北京林业大学信息学院,北京100083 [2]国家林业草原林业智能信息处理工程技术中心,北京100083
出 处:《国土资源遥感》2021年第1期63-71,共9页Remote Sensing for Land & Resources
基 金:国家重点研发计划项目“西北干旱荒漠区煤炭基地生态安全保障技术”(编号:2017YFC0504400);“矿区生态修复与生态安全保障技术集成示范研究”(编号:2017YFC0504406);国家自然科学基金项目“保墒造林技术水分涵养效果检测方法研究”(编号:31400621)共同资助。
摘 要:为了快速准确获取煤炭矿区的地物信息,以达到辅助安排和部署矿区安全生产工作的目的,采用无人机低空遥感拍摄的方式获取了矿区内的高清影像数据,并提出一种基于面向对象和深度学习的矿区无人机影像地物提取方法。首先利用面向对象的分类方法配合人工校正,制作用于深度学习语义分割的标签,再采用FCN-32s,FCN-8s和U-Net 3种深度学习语义分割模型提取图像特征,训练出3种不同的分类模型,并基于此提出多数投票和打分算法2种集成模型改进地物提取精度。实验结果表明,面向对象结合深度学习方法的地物提取准确率、Kappa系数较传统面向对象方法均有明显提升。其中打分集成模型识别效果最好,在测试集上的整体准确率为94.55%,高出面向对象方法5.96百分点;Kappa系数为0.8191。Acquisition of surface features of the mining area is greatly helpful to safe mining operation and management.In this paper,the authors propose an object-oriented combined with deep-learning classification method to extract surface features of the mining area based on unmanned aerial vehicle(UAV)images.Firstly,images are segmented by object-oriented method with manual correction to make annotation data set for deep learning models.Secondly,prepared training image data set is used to train 3 deep learning models(FCN-32s,FCN-8s and U-Net)and obtain 3 trained deep learning models respectively.Thirdly,classification accuracy is improved,and 2 integrate algorithms,which are majority voting algorithm and scoring algorithm based on these deep learning models,are proposed.The experimental results show that,compared with the single object-oriented classification method,the proposed methods have higher surface feature extraction accuracy and higher Kappa coefficient,from which the scoring integrate model has the best recognition effect.The overall accuracy of feature extraction on the testing image data set is 94.55%,which is 5.96 percentage points higher than the single object-oriented classification method,with the Kappa coefficient being 0.8191.
关 键 词:无人机影像 面向对象 深度学习 矿区地物提取 语义分割
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.119.75