可逆粗轧机轧件尾部跟踪算法研究及应用  

Research and application of rolling piece tail tracking algorithm for reversible roughing mill

在线阅读下载全文

作  者:任晓怀 张飞[1] REN Xiaohuai;ZHANG Fei(National Engineering Research Center of Advanced Rolling Technology,University of Science and Technology Beijing,Beijing 100083,China)

机构地区:[1]北京科技大学高效轧制国家工程研究中心,北京100083

出  处:《冶金自动化》2021年第1期63-67,共5页Metallurgical Industry Automation

基  金:北海市科技计划资助项目(YYZGFW19062501)。

摘  要:轧件尾部跟踪是轧制过程自动控制中的一项重要功能。提出了一种基于体积不变定律和模型自学习技术的轧件尾部跟踪算法,通过模型计算轧件已轧体积和未轧体积,进而计算出轧件尾部长度,并通过模型自学习算法进行体积修正,能够在不依赖金属检测器的情况下实现轧件尾部的精确跟踪。所述算法在没有金属检测器的情况下可将轧件尾部跟踪误差控制在±0.5 m范围内,既保证了轧件尾部跟踪的稳定性和精度,又减少了对金属检测器的维护工作,适合推广应用。Rolling piece tail tracking is an important function in automatic control of rolling process.An rolling piece tail tracking algorithm based on the law of volume invariance and model self-learning technology was proposed. The rolled volume and unrolled volume of rolling piece are calculated by the model,and then the length of the rolling piece tail is calculated. The volume is modified by the model self-learning algorithm,which can realize the accurate tracking of the rolling piece tail without relying on the metal detector. The algorithm can control the tail tracking error of rolling piece within± 0. 5 m without metal detector,which ensures the stability and precision of the rolling piece tail tracking,and reduces the maintenance of metal detector,which is suitable for popularization and application.

关 键 词:可逆轧机 粗轧机 轧件 尾部跟踪 体积不变 自学习 

分 类 号:TG334.9[金属学及工艺—金属压力加工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象