基于TVF-EMD和TEO的滚动轴承微弱故障特征提取  被引量:5

Feature Extraction of Weak Fault of Rolling Bearing based on TVF-EMD and TEO

在线阅读下载全文

作  者:刘柯欣 孙虎儿[1] 梁富旺 Liu Kexin;Sun Huer;Liang Fuwang(School of Mechanical Engineering,North University of China,Taiyuan 030051,China)

机构地区:[1]中北大学机械工程学院,山西太原030051

出  处:《机械传动》2021年第3期165-170,共6页Journal of Mechanical Transmission

基  金:山西省自然科学基金(201801D121186)。

摘  要:针对旋转机械转子振动信号通常伴随着强噪声,难以提取其有效信息的问题,提出一种基于时变滤波经验模态分解(Time varying filtering based empirical mode decomposition,TVF-EMD)和Teager能量算子(Teager energy operator,TEO)相结合的故障特征提取方法。首先,用TVF-EMD方法自适应地分解轴承振动信号,以获得一组本征模态函数(Intrinsic mode functions,IMFs);然后,对分解结果进行峭度计算,并根据峭度最大准则选出峰度值最高的敏感分量;进而,利用Teager能量算子对选定的敏感分量进行解调处理,通过观察明显的周期性故障特征频率来实现轴承微弱故障特征提取。进行了仿真和实验,结果证明,该方法能有效实现轴承微弱故障的诊断。Aiming at the problem that the vibration signals for rotating machinery rotors are usually accompanied by strong noise,it is difficult to extract its effective information.A method of fault feature extraction based on time-varying filter empirical mode decomposition(TVF-EMD)and Teager energy operator(TEO)is proposed.Firstly,the TVF-EMD method is used to adaptively decompose the bearing vibration signal to obtain a set of intrinsic modal functions.Then,the kurtosis calculation is performed on the decomposition result,and the sensitive component is selected with the highest kurtosis value according to the maximum kurtosis criterion.Furthermore,the Teager energy operator is used to demodulate the selected sensitive components,and the weak fault feature extraction of the bearing is realized by observing the obvious periodic fault feature frequency.Simulations and experiments are carried out,and the results prove that this method can effectively diagnose the weak faults of bearings.

关 键 词:滚动轴承 微弱故障 时变滤波经验模态分解(TVF-EMD) TEAGER能量算子 

分 类 号:TN911.7[电子电信—通信与信息系统] TH133.33[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象