检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李建涛[1] 王伟伟 LI Jian-tao;WANG Wei-wei(School of Mathematics,Liaoning University,Shenyang 110036,China)
出 处:《辽宁大学学报(自然科学版)》2021年第1期53-60,共8页Journal of Liaoning University:Natural Sciences Edition
基 金:国家自然科学基金青年项目(11701247);辽宁大学2020年度学科建设项目中青年专项。
摘 要:量子信息领域的一个重要热点是构造具有良好参数的量子极大距离可分码.最小距离是其中最重要的一个参数,并且最小距离越大越好,在量子纠错领域一个备受关注的话题是构造最小距离比q/2+1更大的量子极大距离可分码.构造了向量a和向量v,使得由向量a和向量v定义的广义Reed-Solomon码满足Hermite自正交性质.进一步,利用Hermite构造法证明了两类量子极大距离可分码存在.构造的大多数量子极大距离可分码的最小距离比q/2+1大.The construction of quantum maximum distance separable codes with good parameters is an important hotspot in the field of quantum information theory.The minimum distance is one of the most important parameters,and the code performs better if it has a larger minimum distance.Amajor concern today is to construct quantum MDDS codes with minimum distance bigger than q/2+1.Construct some vectors a and v,such that the generalized ReedSolomon codes defined by a and v are Hermitian self-orthogonal.Furthermore,it is shown that two classes of quantum MDS codes exist by the classical Hermitian construction method.Most of quantum MDS codes in this paper have minimum distance larger than q/2+1.
关 键 词:量子MDS码 广义Reed-Solomon码 Hermite自正交码
分 类 号:O236.21[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.126.159