On Finite Noncommutative Grobner Bases  

在线阅读下载全文

作  者:Yatma Diop Djiby Sow 

机构地区:[1]Department of Mathematics and Computer Sciences Cheikh Anta Diop University of Dakar,Dakar,Senegal

出  处:《Algebra Colloquium》2020年第3期381-388,共8页代数集刊(英文版)

摘  要:It is well known that in the noncommutative polynomial ring in serveral variables Buchberger's algorithm does not always terminate.Thus,it is important to characterize noncommutative ideals that admit a finite Grobner basis.In this context,Eisenbud,Peeva and Sturmfels defined a mapγfrom the noncommutative polynomial ring k〈X_(1),...,X_(n)〉to the commutative one k[x_(1),...,x_(n)]and proved that any ideal J of k〈X_(1),...,X_(n)〉,written as J=γ^(-1)(L)for some ideal L of k[x_(1),...,x_(n)],amits a finite Grobner basis with respect to a special monomial ordering on k〈X_(1),...,X_(n)〉.In this work,we approach the opposite problem.We prove that under some conditions,any ideal J of k〈X_(1),...,X_(n)〉admitting a finite Grobner basis can be written as J=γ^(-1)(L)for some ideal L of k[x_(1),...,x_(n)].

关 键 词:natural maps lexicographic extension minimal generators COMMUTATORS 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象