检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱毓[1] ZHU Yu(Information Engineerin,Anhui Industry Polytechnic,Tongling Anhui 244000)
机构地区:[1]安徽工业职业技术学院信息工程系,安徽铜陵244000
出 处:《宁夏师范学院学报》2021年第1期73-78,共6页Journal of Ningxia Normal University
摘 要:为了提高社交网络用户浏览行为数据去冗检测能力,提出基于随机森林的社交网络用户浏览行为数据去冗方法.采用模糊度参数辨识的方法实现对社交网络用户浏览行为数据的特征提取,构建社交网络用户浏览行为数据统计模型,依据社交网络用户浏览行为推荐的约束参数,提高社交网络用户浏览行为数据的挖掘和检测能力,进行社交网络用户浏览行为数据的语义特征分解,采用随机森林学习算法实现对社交网络用户浏览行为数据的冗余信息滤波,结合形状相似性特征分析方法实现社交网络用户浏览行为数据的模糊信息融合,进行社交网络用户浏览行为数据去冗优化.仿真结果表明,采用该方法实现社交网络用户浏览行为数据挖掘的精度较高、数据去冗性能较优.In order to improve the redundancy detection ability of social network users′browsing behavior data,a method for removing redundancy in social network user browsing behavior data based on random forest is proposed.The method of fuzzy parameter identification is used to extract the features of social network users′browsing behavior data.The statistical model of social network users′browsing behavior data is constructed.Improve the mining and detection capabilities of social network users′browsing behavior data based on the recommended constraint parameters of social network users′browsing behavior.This method decomposes the semantic features of social network users′browsing behavior data,and uses a random forest learning algorithm to achieve redundant information filtering of social network users′browsing behavior data.In addition,this method combines the shape similarity feature analysis method to achieve fuzzy information fusion of social network users′browsing behavior data.Use the above framework to optimize the browsing behavior data of social network users.The simulation results show that the proposed method has higher accuracy and better data reduplication performance.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.29.99