基于随机森林的社交网络用户浏览行为数据去冗方法  被引量:2

The method of removing redundant data from social network user browsing behavior data is based on the random forest algorithm

在线阅读下载全文

作  者:朱毓[1] ZHU Yu(Information Engineerin,Anhui Industry Polytechnic,Tongling Anhui 244000)

机构地区:[1]安徽工业职业技术学院信息工程系,安徽铜陵244000

出  处:《宁夏师范学院学报》2021年第1期73-78,共6页Journal of Ningxia Normal University

摘  要:为了提高社交网络用户浏览行为数据去冗检测能力,提出基于随机森林的社交网络用户浏览行为数据去冗方法.采用模糊度参数辨识的方法实现对社交网络用户浏览行为数据的特征提取,构建社交网络用户浏览行为数据统计模型,依据社交网络用户浏览行为推荐的约束参数,提高社交网络用户浏览行为数据的挖掘和检测能力,进行社交网络用户浏览行为数据的语义特征分解,采用随机森林学习算法实现对社交网络用户浏览行为数据的冗余信息滤波,结合形状相似性特征分析方法实现社交网络用户浏览行为数据的模糊信息融合,进行社交网络用户浏览行为数据去冗优化.仿真结果表明,采用该方法实现社交网络用户浏览行为数据挖掘的精度较高、数据去冗性能较优.In order to improve the redundancy detection ability of social network users′browsing behavior data,a method for removing redundancy in social network user browsing behavior data based on random forest is proposed.The method of fuzzy parameter identification is used to extract the features of social network users′browsing behavior data.The statistical model of social network users′browsing behavior data is constructed.Improve the mining and detection capabilities of social network users′browsing behavior data based on the recommended constraint parameters of social network users′browsing behavior.This method decomposes the semantic features of social network users′browsing behavior data,and uses a random forest learning algorithm to achieve redundant information filtering of social network users′browsing behavior data.In addition,this method combines the shape similarity feature analysis method to achieve fuzzy information fusion of social network users′browsing behavior data.Use the above framework to optimize the browsing behavior data of social network users.The simulation results show that the proposed method has higher accuracy and better data reduplication performance.

关 键 词:随机森林 社交网络 用户浏览行为 数据去冗 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象