检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:祁清[1,2] 郭继昌 陈善继 Qi Qing;Guo Jichang;Chen Shanji(School of Physics and Electronic Information Engineering,Qinghai Nationalities University,Xining,Qinghai.810007,China;School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China)
机构地区:[1]青海民族大学物理与电子信息工程学院,青海西宁810007 [2]天津大学电气自动化与信息工程学院,天津300072
出 处:《激光与光电子学进展》2020年第24期230-240,共11页Laser & Optoelectronics Progress
基 金:青海民族大学新一代无线通信关键技术研究及原型开发科研创新团队。
摘 要:图像拍摄过程中会不可避免地产生由相机抖动或物体运动引发的图像模糊问题。针对该问题,提出了一种基于图像边缘判别机制的盲图像去模糊方法,以恢复图像并使之具有清晰的边缘。首先,提出一个PNet子网,将模糊图像作为输入并利用数据驱动的方式进行判别学习,直到网络收敛。将模糊图像再次输入到训练收敛的PNet子网的生成器中,可得到去模糊图像,并将此图像记作边缘弱化图像。其次,提出一个DNet子网,将模糊图像和边缘弱化图像输入到DNet子网中进行训练,得到的训练收敛的DNet生成器即为图像去模糊模型。此外,提出边缘重建函数和图像语义内容损失函数用于约束图像的边缘和语义信息。最后,提出图像边缘判别的目标损失函数,使得DNet子网的判别器在完成生成图像与标签图像真假判别的同时,还完成对边缘弱化图像和标签图像的进一步判别,因此图像边缘信息的判别学习得到了强化。实验结果表明,所提方法能够有效地恢复大幅度模糊图像和运动引起的模糊图像,这证明了边缘判别机制对图像边缘恢复的重要作用。In the process of image acquisition,the image blurring problem is always inevitably caused by camera shaking or object movement.In order to solve this problem,a blind image deblurring method based on image edge determination mechanism is proposed to restore images with sharp edges.First,a PNet subnet is proposed to set blurry images as inputs,and determination learning is carried out by using a data driven method until the network is converged.The blurring image is input again to the generator of training converge in the PNet subnet,which can obtain deblurring images and the deblurring images are noted as edge-weakened images.Second,a DNet subnet is proposed,both blurry images and edge-weakened images are served as inputs for training,and the DNet generator of training convergence is image deblurring model.In addition,the edge reconstruction function and image semantic content loss function are proposed to constrain the image edge and sematic information.Finally,an object loss function for image edge determination is proposed to make the DNet subnet generator complete the true-false determination of generated images and labeled images and finish the further determination of edge-weakened images and labeled images.Therefore,the determination learning of image edge information is enhanced.Experimental results show that the proposed method can restore large-scale blurring images and blurring images caused by movement,which proves the important role of edge determination mechanism in the image edge restoring.
关 键 词:图像处理 图像去模糊 生成对抗网络 深度神经网络 深度学习
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28