面向地震巨灾保险的建筑特性快速提取方法  

Fast Extraction Method of Building Characteristics for Earthquake Catastrophe Insurance

在线阅读下载全文

作  者:郑经纬 周越[2,4] 高爽 戴志军 陈苏[2,4] 熊政辉 Zheng Jingwei;Zhou Yue;Gao Shuang;Dai Zhijun;Chen Su;Xiong Zhenghui(China Energy Engineering Group Co.,Ltd.,Beijing 100124,China;Institute of Geophysics,China earthquake administration,Beijing 100081,China;Postdoctoral workstation of China Reinsurance(Group)Corporation,Beijing 100033,China;China Earthquake Risk and Insurance Laboratory,Beijing 100081,China)

机构地区:[1]中国能源建设股份有限公司,北京100022 [2]中国地震局地球物理研究所,北京100081 [3]中国再保险集团股份有限公司博士后工作站,北京100033 [4]中国地震风险与保险实验室,北京100081

出  处:《震灾防御技术》2020年第4期739-748,共10页Technology for Earthquake Disaster Prevention

基  金:中央级公益性科研院所基本科研业务费专项(DQJB17C03、DQJB17T01)。

摘  要:房屋建筑分类是抗震设计和地震风险分析的基础,是巨灾保险的纽带环节,也是结构易损性准确、完备分析的前驱保障,快速获取建筑特性参数非常关键。基于影像数据获取结构特性相比传统手段具有显著优势,然而其准确性具有一定挑战性,从影像数据得到实时的、较准确的结构特性成为地震保险数据获取技术的关注焦点。本文采用深度学习方法开展从影像数据中提取面向地震保险需求的建筑特性数据,构建基于深度学习方法的建筑高度识别模型和基于机器视觉的建筑高度识别方法,运用基于Xception神经网络深度学习和机器视觉的模型,对北京地区的建筑高度进行模型测试,该方法可为地震保险分析提供重要的基础数据支持。Building classification is the basis of seismic design and earthquake risk analysis,and is also the link of catastrophe insurance.It is also the precursor to the accurate and complete analysis of structural vulnerability,and it is critical to quickly obtain building characteristic parameters.Obtaining structural characteristics based on image data has significant advantages over traditional methods.However,the accuracy of its related methods is a very challenging problem.Obtaining more accurate structural characteristics from image data in real time has become the focus of seismic insurance data acquisition technology.In this paper,deep learning method is used to extract building characteristic data oriented to earthquake insurance from image data.Building height recognition model based on deep learning methods were performed and applied in Beijing.The method can provide important basic data support for earthquake insurance analysis.

关 键 词:地震 巨灾保险 建筑特性 信息提取 

分 类 号:TU198[建筑科学—建筑理论] TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象